

Powerful	Python

Table	of	Contents
Doing	More	with	Python

Python	Versions

Python	Application	Environments

Python	Package	Management

Scaling	With	Generators

Iteration	in	Python

Generator	Functions

Generator	Patterns	and	Scalable	Composability

Python	is	Filled	With	Iterators

The	Iterator	Protocol

Creating	Collections	with	Comprehensions

List	Comprehensions

Formatting	For	Readability	(And	More)

Multiple	Sources	and	Filters

Comprehensions	and	Generators

Dictionaries,	Sets,	and	Tuples

2

Limits	of	Comprehensions

Advanced	Functions

Accepting	&	Passing	Variable	Arguments

Functions	As	Objects

Key	Functions	in	Python

Decorators

The	Basic	Decorator

Data	In	Decorators

Decorators	That	Take	Arguments

Class-based	Decorators

Decorators	For	Classes

Preserving	the	Wrapped	Function

Exceptions	and	Errors

The	Basic	Idea

Exceptions	Are	Objects

Raising	Exceptions

Catching	And	Re-raising

The	Most	Diabolical	Python	Anti-Pattern

Classes	and	Objects:	Beyond	The	Basics

3

Quick	Note	on	Python	2

Properties

The	Factory	Patterns

The	Observer	Pattern

Magic	Methods

Rebelliously	Misusing	Magic	Methods

Automated	Testing	and	TDD

What	is	Test-Driven	Development?

Unit	Tests	And	Simple	Assertions

Fixtures	And	Common	Test	Setup

Asserting	Exceptions

Using	Subtests

Final	Thoughts

String	Formatting

Replacing	Fields

Number	Formats	(and	"Format	Specs")

Width,	Alignment,	and	Fill

F-Strings

Percent	Formatting

4

Logging	in	Python

The	Basic	Interface

Configuring	The	Basic	Interface

Passing	Arguments

Beyond	Basic:	Loggers

Log	Destinations:	Handlers	and	Streams

Logging	to	Multiple	Destinations

Record	Layout	with	Formatters

What’s	Next?

5

DOING	MORE	WITH	PYTHON

I	don’t	need	to	tell	you	how	amazing	Python	is.	You	know.	Or	you	wouldn’t
be	reading	this	book.

It’s	 still	 fun	 to	 recognize	what	 an	 exciting	 time	 it	 is	 for	 Python.	Amazon’s
best-selling	programming	book	list	is	filled	with	Python.	Attendance	at	PyCon
keeps	 climbing,	 on	 top	 of	 the	 regional	 conferences	 and	 spin-off	 meetups.
More	 and	 more	 organizations	 are	 using	 Python…		from	 tiny	 startups,	 to
multinational	corporations,	to	NASA	and	the	JPL,	and	everything	in	between.
Even	 MIT	 reworked	 their	 famous,	 venerable	 "Introduction	 to	 Computer
Science	 and	 Programming"	 class,	 replacing	 Scheme	with…		 you	 guessed	 it,
Python.

But	enough	cheerleading.

There	 are	massive	heaping	piles	of	books	for	people	new	to	Python,	new	to
programming,	 or	 both.	But	 you’re	 past	 the	 point	where	 those	 do	 you	much
good.	If	you’ve	been	coding	in	Python	for	a	while	already,	or	Python	is	your
second	or	third	or	seventh	programming	language…		you	need	more.

6

Reading	blog	posts	can	help,	as	can	studying	open-source	code,	and	 (if	you
can	swing	 it)	working	alongside	a	 seasoned	Pythonista.	But	 these	aren’t	 the
most	convenient	ways	to	learn.

And	that’s	why	I	wrote	this	book.

Python	is	richer	than	you	imagine	-	as	a	language,	as	an	ecosystem.	For	many
engineering	 domains,	 it	 has	 grown	 into	 a	 truly	 outstanding	 choice	 for
implementing	 high-quality,	 robust,	maintainable	 software	 -	 everything	 from
one-off	 scripts	 to	 sprawling,	 mission-critical	 applications.	 This	 book	 is
designed	to	help	you	master	all	of	that:	to	teach	you	techniques,	patterns,	and
tools	to	permanently	catapult	your	skill	with	everything	Python	has	to	offer.

To	accomplish	this,	I	did	not	hesitate	to	make	hard	choices.	Understand	this
book	 is	 highly	opinionated.	 I	 focus	 on	 certain	 topics,	 and	 certain	 ways	 of
structuring	code,	because	I	believe	it	gives	you	the	best	payoff	and	value	for
your	reading	time.	Many	blog	posts	have	been	written	about	different	aspects
of	Python	development;	frankly,	some	of	them	are	not	good	advice.	My	goal
in	this	book	is	to	give	you	excellent	advice.

To	that	end,	this	book	is	practical.	Everything	herein	is	based	on	the	lessons
learned	writing	 real-world	 software,	 usually	 as	 part	 of	 a	 team	of	 engineers.
That	 means	 factors	 like	 maintainability,	 robustness,	 and	 readability	 are
considered	more	 important	 than	 anything	 else.	 There	 is	 a	 balance	 between
leveraging	 powerful	 abstractions,	 and	 writing	 code	 that	 is	 easy	 to	 reason

7

about	correctly	by	everyone	on	your	team.	Every	page	of	this	book	walks	that
line.

Throughout,	I	give	much	attention	to	cognitive	aspects	of	development.	How
do	you	write	code	which	you	and	others	can	reason	about	easily,	quickly,	and
accurately?	This	is	one	reason	variable	and	function	naming	is	so	important.
But	it	goes	far	beyond	that,	to	intelligently	choosing	which	language	features
and	library	resources	to	use,	and	which	to	avoid.

Thus,	 this	 book	 is	selective	 in	 its	 topics.	 It’s	 not	 too	 large,	 as	measured	by
number	of	pages.	That’s	a	feature,	not	a	bug:	you	already	have	too	much
to	read.	The	focus	is	on	what’s	most	impactfully	valuable	to	you,	so	that	-	as
much	as	possible	-	everything	you	learn	will	serve	you	for	years.

That’s	one	reason	this	book	is	focused	on	Python	3.	I’m	fortunately	also	able
to	 help	 those	 of	 you	 using	 Python	 2.7,	 because	 the	most	 valuable	 patterns,
practices	 and	 strategies	 in	 Python	 are	 surprisingly	 independent	 of	 Python
version.	 So	 I’ll	 demonstrate	 each	 idea	 using	 Python	 3	 code,	 and	where	 the
syntax	of	Python	2.7	differs,	I’ll	point	out	those	differences	as	we	go	along.

And	it’s	important	that	you	do	learn	Python	3.	The	main	Linux	distributions
are	mostly	switching	 to	3;	 third-party	 library	support	 is	extremely	 solid;	and
the	 list	 of	 improvements	 and	 features	 Python	 3	 has	 over	 2.7	 is	 huge,	 and
getting	longer.[1]	This	book	is	written	to	prepare	you	for	Python’s	foreseeable
future.

8

When	I	teach	live	workshops	in	Python	for	working	developers,	my	intention
is	 to	 instill	 transformatively	 powerful	 skills	 and	 abilities,	 which	 will	 serve
attendees	 for	 the	 rest	 of	 their	 careers.	 I	 bring	 this	 same	 intention	 for	you,
reading	 this	book.	 If	 you	have	any	comments	or	questions,	 I’d	 love	 to	hear
them	-	reach	me	by	email	at	aaron@powerfulpython.com.

And	 as	 a	 reader	 of	 this	 book,	 you	 will	 want	 to	 subscribe	 to	 the	 Powerful
Python	 Newsletter,[2]	 because	 it	 gives	 you	 important	 new	 articles	 on
intermediate	and	advanced	Python.	For	those	of	you	with	a	digital	edition	of
this	book,	it’s	also	how	I	let	you	know	there’s	a	new	edition	to	download.

Speaking	of	the	digital	version:	if	you’ve	bought	this	as	a	physical	book,	you
can	add	a	DRM-free	digital	copy	for	$4.99	USD.	This	includes	digital	updates
to	 future	 editions;	 you’ll	 get	 the	 3rd	 edition	when	 it	 comes	 out,	 as	well	 as
intermediate	point	releases.	(Between	the	1st	and	2nd	editions,	digital	readers
got	three	substantial	updates,	with	new	chapters	and	extensive	revisions.)	Go
to	powerfulpython.com/book-upgrade	to	take	advantage.

Python	Versions
We’re	at	an	interesting	transition	point.	I	know	most	of	you	are	using	Python
3	at	least	part	of	the	time.	Many	of	you	use	only	Python	2.7,	and	many	only
Python	3.	In	this	book,	I	take	care	of	everyone.

9

mailto:aaron@powerfulpython.com

Most	 code	 examples	 in	 this	 book	 are	 written	 for	 Python	 3.5	 and	 later.
Sometimes	I’ll	 talk	about	 features	specific	 to	a	 later	version	-	when	we	 talk
about	Python	3.6’s	 f-strings,	 for	 example	 -	 and	 I’ll	make	 it	 clear	when	 that
happens.

I’ve	 also	 written	 this	 book’s	 code	 in	 a	 way	 that	 can	 be	 easily	 adapted	 to
Python	2.7.	Surprisingly,	in	many	cases	the	exact	same	code	will	work	in	both
Python	 2.7	 and	 Python	 3!	The	 structure	of	quality	Python	 software,	 and
the	patterns	and	strategies	that	work	exceptionally	well	in	the	real	world,
are	surprisingly	independent	of	version.

And	of	course,	 there	are	sometimes	differences	in	syntax.	So	throughout	the
book,	I	include	footnotes	and	special	sub-sections	that	explain	how	things	are
different	in	Python	2.7,	as	they	come	up.

(And	if	you	are	working	in	that	version,	pay	close	attention	when	I	show	you
Python	2	code.	If	there	are	two	ways	to	do	something	in	Python	2.7	-	one	of
which	 is	 forward-compatible	with	Python	3,	 and	 another	which	 is	 not	 -	 I’ll
always	show	you	the	former.	It	tells	you	how	to	write	for	Python	2	today,	in	a
way	that	gives	you	less	to	re-learn	when	you	eventually	upgrade.)

People	 often	 ask	 if	 it’s	 worth	 their	 effort	 to	 upgrade	 from	 Python	 2	 to	 3.
You’ll	 find	 passionate	 opinions	 on	 every	 side	 of	 this	 fence.	I	 can	offer	 this
advice:	If	 I	 had	 to	 sum	 up	 what	 makes	 Python	 3	 different,	 it’s	 that
creating	high	quality	software	 is	easier	 in	Python	3.	You	can,	obviously,

10

create	high	quality	software	in	Python	2;	you	just	have	to	work	a	bit	harder,
sometimes.

Of	course,	you	also	lose	the	opportunity	to	use	some	exciting	and	fun	Python-
3-only	features.	This	arguably	doesn’t	matter	from	an	engineering	standpoint.
But	it	might	matter	to	you	personally.	And	there	will	come	a	day	when	having
only	Python	2.x	on	your	resume	will	make	it	look	dated.

In	 any	 event,	 this	 book	 is	 about	current	 versions	 of	 Python.	 That	 includes
Python	 versions	 3.5	 and	 later,	 as	 well	 as	 2.7.	 I	 do	 consider	 Python	 2.6
obsolete	at	this	point,	though	you	may	still	need	to	use	it	for	legacy	reasons.	If
so,	some	topics	will	be	a	bit	more	difficult	to	translate	into	your	code	base.

This	book	uses	str.format()	to	format	strings:

>>>	"Hello,	{}!".format("John")

'Hello,	John!'

For	a	quick	refresher,	skim	the	first	 few	sections	of	 the	"String	Formatting"
chapter.	 To	 round	 out	 this	 intro,	 we’ll	 look	 at	 some	 important	 practical
aspects	of	developing	modern	Python	applications.

Python	Application	Environments
Python	sports	a	concept	called	the	virtual	environment.	It	is	sometimes	called
a	"virtualenv"	or	a	"venv".	You	can	think	of	a	virtual	environment	as	a	kind	of

11

chali
Highlight

chali
Highlight

▪

▪

▪

lightweight	container	for	a	Python	application,	where	the	application	can	see
its	own	particular	 set	of	Python	 libraries,	at	 specific	versions.	This	provides
some	significant	benefits	for	deployment:

Dependencies	 can	 be	 precisely	 tracked	 and	 specified,	 and	 even	 kept	 in
version	control.

Two	 different	 Python	 applications	 with	 conflicting	 dependencies	 can
peacefully	coexist	on	the	same	machine.

Python	 packages	 can	 be	 installed	 without	 requiring	 elevated	 system
privileges.

How	 you	 create	 a	 virtual	 environment	 depends	 on	 whether	 you’re	 using
Python	3	or	2.	For	Python	3,	you	invoke	python3	-m	venv,	adding	one

more	argument	-	the	name	of	a	folder	to	create:

#	The	recommended	method	in	Python	3.

$	python3	-m	venv	webappenv

(The	$	is	the	shell	prompt.)	For	the	near	future,	you	can	also	use	the	pyvenv

command.	This	works	fine,	but	 is	deprecated,	and	scheduled	to	disappear	 in
Python	3.8:

#	Does	the	same	thing,	but	is	deprecated.

$	pyvenv	webappenv

12

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

What	 these	 both	 do	 is	 create	 a	 folder	 named	 "webappenv"	 in	 the	 current
directory.	 The	 Python	 2	 tool,	virtualenv,	 has	 the	 same	 interface;

wherever	 you	 see	python	 -m	 venv	 in	 this	 book,	 you	 can	 substitute

virtualenv	instead:

#	Same	as	the	above,	in	Python	2.

$	virtualenv	webappenv

Regardless	 of	 which	 you	 use,	 you’ll	 end	 up	 with	 a	 new	 folder	 named
webappenv,	containing	all	sorts	of	goodies.	To	access	them,	you	must	run	a

script	called	"activate".	In	macOS	and	Linux,	type	the	following	in	your	shell:

$	source	webappenv/bin/activate

(webappenv)$

For	 Windows,	 run	 the	 script	webappenv\Scripts\activate.bat

instead:

C:\labs>	webappenv\Scripts\activate.bat

(webappenv)	C:\labs>

Notice	your	prompt	has	changed:	now	it	contains	(webappenv).	The	script

called	activate	did	not	start	a	new	shell	or	session;	all	it	did	was	alter	your

PATH	and	PYTHONPATH	environment	variables,	and	a	few	others	(like	the
PS1	variable,	which	 specifies	how	your	 shell	 renders	 the	prompt.)	You	 just

13

chali
Highlight

chali
Highlight

chali
Highlight

activated	 your	 virtual	 environment,	 as	 we	 say.	 When	 it’s	 active	 for	 that
particular	shell	session,	we	say	you	are	working	in	the	virtual	environment.

Suppose	 your	 system	 Python	 executable	 is	 at	/usr/bin/python3	 (or

/usr/bin/python	 for	 version	 2).	 And	 suppose	 you’ve	 created	 the

webappenv	 folder	 in	/Users/sam/mywebapp/webappenv.	 With	 the

virtual	 environment	 activated,	 you	have	your	own	 local	 copy	of	 the	Python
interpreter.	 You	 can	 check	 this	 with	 the	which	 command	 on	 macOS	 and

Linux:

(webappenv)$	which	python

/Users/sam/mywebapp/webappenv/bin/python

(webappenv)$	python	-V

Python	3.6.0

Or	the	where	command	on	Windows:

(webappenv)	C:\labs>	where	python

C:\labs\webappenv\Scripts\python.exe

C:\Python36\python.exe

This	 is	 for	 the	 virtual	 environment	we	 created	with	pyvenv,	which	means

it’s	 Python	 3.	 Now,	 what	 if	 you	 want	 to	 restore	 your	 old	 PATH	 (and
PYTHONPATH,	 etc.)?	 Within	 the	 virtualenv,	 you	 now	 have	 a	 function
defined	called	deactivate:

14

chali
Highlight

(webappenv)$	deactivate

$	which	python

/usr/bin/python

Now	imagine	you	are	writing	a	Python	application:	 let’s	call	 it	mediatag,

one	designed	for	 tagging	files	 in	your	media	collection.	 It’s	 implemented	 in
Python	2.7.	We	can	do	the	following:

$	cd	/Users/sam/mediatag

$	virtualenv	mediatagenv

$	source	mediatagenv/bin/activate

(mediatagenv)$	which	python

/Users/sam/mywebapp/mediatagenv/bin/python

(mediatagenv)$	python	-V

Python	2.7.13

This	shows	one	minor	benefit	of	virtual	environments:	it	provides	a	new	way
to	control	the	precise	version	of	Python	used	by	an	application.	But	the	main
benefit	for	using	virtual	environments	has	to	do	with	resolving	requirements,
upgrades,	and	dependencies	with	packages	and	libraries.

Python	Package	Management
The	 sordid	 history	 of	 Python	 library	 and	 package	 management	 is	 full	 of
hidden	 twists,	 perilous	 turns,	 and	 dark	 corners	 hiding	 sinister	 beasts.	 Good
news:	you	don’t	have	to	worry	about	any	of	that.

15

chali
Highlight

chali
Highlight

Modern	 Python	 provides	 an	 application	 called	pip,	 which	 allows	 you	 to

easily	 install	 third-party	 Python	 libraries	 and	 applications.	It	 incorporates
many	of	the	lessons	learned	from	its	predecessors,	sidestepping	problems	that
previously	had	to	be	dealt	with	manually.	And	it	works	very	well	with	Python
virtual	environments.

The	 first	 step	 is	 to	 install	pip.	 With	 Python	 3,	 this	 is	 included	 for	 you

automatically,	and	is	installed	in	your	virtual	environment:

$	source	venv/bin/activate

(venv)$	python	-V

Python	3.6.0

(venv)$	which	pip

/Users/sam/myapp/venv/bin/pip

For	 Python	 2,	 if	pip	 is	 already	 installed	 on	 the	 system,	 your	 virtual

environment	will	 be	 created	 to	 include	 it.	For	macOS	and	Windows,	 recent
versions	of	Python	2	automatically	include	pip;	if	not,	you	can	quickly	find

out	how	to	install	it	by	searching	online.

Once	 you	 have	 the	pip	 executable,	 you	 can	 use	pip	install	 to	 install

libraries	 just	 within	 the	 virtual	 environment.	 For	 example,	requests	 is	 a

high-quality	HTTP	library.	Install	it	like	so:

pip	install	requests

16

chali
Highlight

chali
Highlight

chali
Highlight

This	 is	 the	install	 command.	 You	 will	 see	 some	 output,	 narrating	 the

process	 of	 installing	requests	 at	 a	 specific	 version.	Once	 complete,	 you

will	be	able	to	open	a	Python	prompt	and	import	requests.

T h e	pip	 install	 command	 is	 also	 used	 to	 upgrade	 packages.	 For

example,	 sometimes	 a	 fresh	 virtual	 environment	may	 install	 a	 slightly	 stale
version	of	pip.	pip	is	just	another	package,	so	you	can	upgrade	it	with	the	-

U	or	--upgrade	option:

pip	install	--upgrade	pip

Installed	 packages	 are,	 by	 default,	 fetched	 from	 Pypi	 -	 the	 official	 online
Python	 package	 repository.	 Any	 package	 or	 library	 listed	 at
https://pypi.python.org/pypi	 can	 be	 installed	 with	pip.	 You	 can	 uninstall

them	with	pip	uninstall.

Now,	 some	 of	 these	 packages'	 files	 are	 substantial,	 or	 even	 compiled	 into
object	files.	You	definitely	don’t	want	to	put	them	in	version	control.	How	do
you	 register	 the	 exact	 version	 dependencies	 your	 app	 has	 for	 third-party
libraries?	 And	 how	 do	 you	 manage	 upgrades	 (and	 even	 downgrades)	 over
time?

pip	provides	a	good	solution	 for	 this.	The	 first	part	of	 it	 relies	on	 the	pip

freeze	command:

17

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

https://pypi.python.org/pypi

(venv)$	pip	freeze

requests==2.7.0

This	 prints	 the	 packages	 installed	 from	 Pypi,	 one	 per	 line,	 with	 the	 exact
ve r s i on .	What	 you	 can	 do	 is	 place	 this	 in	 a	 file	 named
requirements.txt:

(venv)$	pip	freeze	>	requirements.txt

(venv)$	cat	requirements.txt

requests==2.7.0

This	 file	 is	what	 you	will	 check	 into	 version	 control.	You	 can	 recreate	 the
application	environment,	right	down	to	the	minor	versions	of	each	dependent
library,	 simply	 by	 passing	requirements.txt	 to	pip.	 Whether	 your

coworker	 is	 fetching	 the	 raw	 source	 to	 start	 development,	 or	 if	 the	 devops
team	sets	up	a	CI	environment	that	runs	the	automated	tests,	the	environment
is	consistent	and	well-defined,	from	development	to	staging	to	production.

You	 can	 pass	 any	 file	 path	 to	python3	 -m	 venv	 (and	pyvenv,	 and

virtualenv).	For	organizational	convenience,	many	choose	to	put	it	in	the

top-level	 folder	 of	 the	 repository	 holding	 the	 Python	 application.	 There	 are
two	schools	of	thought	on	what	to	name	it.

One	school	picks	a	consistent	name,	which	is	used	for	every	project.	"venv"	is
very	popular:

18

chali
Highlight

chali
Highlight

chali
Highlight

python3	-m	venv	venv

The	idea	is	that	every	Python	project	will	have	a	folder	in	its	top	level	called
venv	 to	 contain	 the	 virtual	 environment.	 This	 has	 several	 advantages.	 For

one,	you	can	easily	activate	the	virtual	environment	for	any	application,	just
by	 typing	source	venv/bin/activate.	In	fact,	you	can	define	a	shell

alias	to	help:

#	Type	"venv"	<enter>	to	get	in	the	virtual	environment.

alias	venv='source	venv/bin/activate'

You	 can	 also	 configure	 your	 version	 control	 system	 to	 ignore	 any	 folder
named	 "venv",	 and	 thereby	 avoid	 ever	 accidentally	 committing	 your	 virtual
environment.	 (You	don’t	want	 to	 do	 that.	 It’s	 a	 lot	 of	 files,	 and	will	 annoy
your	fellow	developers.)

The	other	naming	scheme	is	to	give	it	a	name	that	has	something	to	do	with
the	 application.	 For	 example,	 for	 an	 application	 called	 "mywebapp",	 you
might	create	it	like	this:

python3	-m	venv	mywebappenv

The	advantage	of	 this	 is	 that,	when	activated,	 the	prompt	 is	modified	 to	 tell
you	which	particular	virtual	environment	your	shell	prompt	is	using.	This	can

19

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

be	helpful	if	you	work	with	many	different	Python	applications,	as	it’s	much
more	informative	than	a	prompt	that	just	says	"(venv)".

The	downside	comes	from	the	inconsistency	of	the	folder	name:	keeping	the
folder	 out	 of	 version	 control	 is	more	 error-prone,	 and	 activating	 the	 virtual
environment	 requires	 the	 distraction	 of	 conscious	 thought	 each	 time.	 Both
approaches	are	valid;	it	really	comes	down	to	which	you	and	your	teammates
like	better. �

20

1	See	https://powerfulpython.com/blog/whats-really-new-in-python-3/	for	a	summary.

2	https://powerfulpython.com/python-newsletter/

21

https://powerfulpython.com/blog/whats-really-new-in-python-3/
https://powerfulpython.com/python-newsletter/

SCALING	WITH	GENERATORS

This	for	loop	seems	simple:

for	item	in	items:

				do_something_with(item)

And	 yet,	 miracles	 hide	 here.	 As	 you	 probably	 know,	 the	 act	 of	 efficiently
going	through	a	collection,	one	element	at	a	time,	is	called	iteration.	But	few
understand	how	Python’s	iteration	system	really	works…		how	deep	and	well-
thought-out	it	is.	This	chapter	makes	you	one	of	those	people,	giving	you	the
ability	to	naturally	write	highly	scalable	Python	applications…		able	to	handle
ever-larger	data	sets	in	performant,	memory-efficient	ways.

Iteration	 is	 also	 core	 to	 one	of	Python’s	most	 powerful	 tools:	 the	generator
function.	Generator	 functions	 are	not	 just	 a	 convenient	way	 to	 create	useful
iterators.	They	enable	some	exquisite	patterns	of	code	organization,	in	a	way
that	-	by	their	very	nature	-	intrinsically	encourage	excellent	coding	habits.

22

chali
Highlight

This	 chapter	 is	 special,	 because	 understanding	 it	 threatens	 to	 make	 you	 a
permanently	 better	 programmer	in	 every	 language.	 Mastering	 Python
generators	tends	to	do	that,	because	of	the	distinctions	and	insights	you	gain
along	the	way.	Let’s	dive	in.

Iteration	in	Python
Python	has	a	built-in	function	called	iter().	When	you	pass	it	a	collection,

you	get	back	an	iterator	object:

>>>	numbers	=	[7,	4,	11,	3]

>>>	iter(numbers)

<list_iterator	object	at	0x10219dc50>

Just	 as	 in	 other	 languages,	 a	 Python	 iterator	 produces	 the	 values	 in	 a
sequence,	 one	 at	 a	 time.	 You	 probably	 know	 an	 iterator	 is	 like	 a	 moving
pointer	over	the	collection:

>>>	numbers_iter	=	iter(numbers)

>>>	for	num	in	numbers_iter:	print(num)

7

4

11

3

You	 don’t	 normally	 need	 to	 do	 this.	 If	 you	 instead	 write	for	 num	 in

numbers,	what	Python	effectively	does	under	 the	hood	 is	call	iter()	on

23

chali
Highlight

chali
Highlight

chali
Highlight

that	 collection.	This	 happens	 automatically.	Whatever	 object	 it	 gets	 back	 is
used	as	the	iterator	for	that	for	loop:

#	This...

for	num	in	numbers:

				print(num)

#	...	is	effectively	just	like	this:

numbers_iter	=	iter(numbers)

for	num	in	numbers_iter:

				print(num)

An	iterator	over	a	collection	is	a	separate	object,	with	its	own	identity	-	which
you	can	verify	with	id():

>>>	#	id()	returns	a	unique	number	for	each	object.

...	#	Different	objects	will	always	have	different	IDs.

>>>	id(numbers)

4330133896

>>>	id(numbers_iter)

4330216640

How	 does	iter()	 actually	get	 the	 iterator?	 It	 can	do	 this	 in	 several	ways,

but	 one	 relies	 on	 a	magic	method	 called	__iter__.	This	 is	 a	method	any

class	 (including	yours)	may	define;	when	called	with	no	arguments,	 it	must
return	a	fresh	iterator	object.	Lists	have	it,	for	example:

24

chali
Highlight

chali
Highlight

chali
Highlight

>>>	numbers.__iter__

<method-wrapper	'__iter__'	of	list	object	at	0x10130e4c8>

>>>	numbers.__iter__()

<list_iterator	object	at	0x1013180f0>

Python	makes	a	distinction	between	objects	which	are	iterators,	and	objects
which	are	iterable.	We	say	an	object	is	iterable	if	and	only	if	you	can	pass	it
to	iter(),	and	get	a	ready-to-use	iterator.	If	that	object	has	an	__iter__

method,	iter()	will	 call	 it	 to	 get	 the	 iterator.	 Python	 lists	 and	 tuples	 are

iterable.	 So	 are	 strings,	 which	 is	 why	 you	 can	 write	for	 char	 in

my_str:	to	iterate	over	my_str	's	characters.	Any	container	you	might	use
in	a	for	loop	is	iterable.

A	 for	 loop	 is	 the	 most	 common	 way	 to	 step	 through	 a	 sequence.	 But

sometimes	your	code	needs	to	step	through	in	a	more	fine-grained	way.	For
this,	 use	 the	 built-in	 function	next().	 You	 normally	 call	 it	 with	 a	 single

argument,	 which	 is	 an	 iterator.	 Each	 time	 you	 call	 it,
next(my_iterator)	fetches	and	returns	the	next	element:

>>>	names	=	["Tom",	"Shelly",	"Garth"]

>>>	#	Create	a	fresh	iterator...

...	names_it	=	iter(names)

>>>	next(names_it)

'Tom'

>>>	next(names_it)

25

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

'Shelly'

>>>	next(names_it)

'Garth'

What	 happens	 if	 you	 call	next(names_it)	 again?	next()	 will	 raise	 a

special	built-in	exception,	called	StopIteration:

>>>	next(names_it)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

StopIteration

This	 is	 part	 of	Python’s	iterator	protocol.	Raising	 this	specific	exception	 is,
by	design,	how	an	 iterator	 signals	 the	 sequence	 is	done.	You	 rarely	have	 to
raise	 or	 catch	 this	 exception	 yourself,	 though	we’ll	 see	 some	 patterns	 later
where	it’s	useful	to	do	so.	A	good	mental	model	for	how	a	for	loop	works	is

to	 imagine	 it	 calling	next()	 each	 time	 through	 the	 loop,	 exiting	 when

StopIteration	gets	raised.

When	 using	next()	 yourself,	 you	 can	provide	 a	 second	 argument,	 for	 the

default	 value.	 If	 you	 do,	next()	 will	 return	 that	 instead	 of	 raising

StopIteration	at	the	end:

>>>	names	=	["Tom",	"Shelly",	"Garth"]

>>>	new_names_it	=	iter(names)

>>>	next(new_names_it,	"Rick")

'Tom'

26

chali
Highlight

>>>	next(new_names_it,	"Rick")

'Shelly'

>>>	next(new_names_it,	"Rick")

'Garth'

>>>	next(new_names_it,	"Rick")

'Rick'

>>>	next(new_names_it)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

StopIteration

>>>	next(new_names_it,	"Jane")

'Jane'

Now,	 let’s	consider	a	different	 situation.	What	 if	you	aren’t	working	with	a
simple	sequence	of	numbers	or	strings,	but	something	more	complex?	What	if
you	are	calculating	or	reading	or	otherwise	obtaining	 the	sequence	elements
as	 you	 go	 along?	 Let’s	 start	with	 a	 simple	 example	 (so	 it’s	 easy	 to	 reason
about).	 Suppose	 you	 need	 to	 write	 a	 function	 creating	 a	 list	 of	 square
numbers,	which	will	be	processed	by	other	code:

def	fetch_squares(max_root):

				squares	=	[]

				for	n	in	range(max_root):

								squares.append(n**2)

				return	squares

MAX	=	5

for	square	in	fetch_squares(MAX):

				do_something_with(square)

27

chali
Highlight

This	works.	But	there	is	potential	problem	lurking	here.	Can	you	spot	it?

Here’s	 one:	 what	 if	MAX	 is	 not	 5,	 but	 10,000,000?	Or	 10,000,000,000?	Or

more?	Your	memory	footprint	is	pointlessly	dreadful:	the	code	here	creates	a
massive	list,	uses	it	once,	then	throws	it	away.	On	top	of	that,	the	second	for

loop	 cannot	 event	start	 until	 the	 entire	 list	 of	 squares	 has	 been	 fully
calculated.	 If	 some	poor	human	 is	using	 this	program,	 they’ll	wonder	 if	 the
program	is	stuck.

Even	worse:	What	if	you	aren’t	doing	arithmetic	to	get	each	element	-	which
is	 fast	 and	cheap	 -	but	making	a	 truly	expensive	calculation?	Or	making	an
API	 call	 over	 the	 network?	 Or	 reading	 from	 a	 database?	 Your	 program	 is
sluggish,	 even	 unresponsive,	 and	might	 even	 crash	 with	 an	 out-of-memory
error.	Its	users	will	think	you’re	a	terrible	programmer.

The	solution	is	to	create	an	iterator	to	start	with,	lazily	computing	each	value
only	when	needed.	Then	each	cycle	through	the	loop	happens	just	in	time.

For	the	record,	here	is	how	you	create	an	equivalent	iterator	class,	which	fully
complies	with	Python’s	iterator	protocol:

class	SquaresIterator:

				def	__init__(self,	max_root_value):

								self.max_root_value	=	max_root_value

								self.current_root_value	=	0

				def	__iter__(self):

								return	self

28

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

				def	__next__(self):

								if	self.current_root_value	>=	self.max_root_value:

												raise	StopIteration

								square_value	=	self.current_root_value	**	2

								self.current_root_value	+=	1

								return	square_value

#	You	can	use	it	like	this:

for	square	in	SquaresIterator(5):

				print(square)

Holy	crap,	that’s	horrible.	There’s	got	to	be	a	better	way.

Good	news:	there’s	a	better	way.	It’s	called	a	generator	function,	and	you’re
going	to	love	it!

Generator	Functions
Python	provides	a	tool	called	the	generator	function,	which…		well,	it’s	hard
to	describe	everything	 it	gives	you	 in	one	sentence.	Of	 its	many	 talents,	 I’ll
first	focus	on	how	it’s	a	very	useful	shortcut	for	creating	iterators.

A	generator	function	looks	a	lot	like	a	regular	function.	But	instead	of	saying
return,	 it	 uses	 a	 new	 and	 different	 keyword:	yield.	 Here’s	 a	 simple

example:

def	gen_nums():

				n	=	0

				while	n	<	4:

29

chali
Highlight

chali
Highlight

chali
Highlight

								yield	n

								n	+=	1

Use	it	in	a	for	loop	like	this:

>>>	for	num	in	gen_nums():

...					print(num)

0

1

2

3

Let’s	 go	 through	 and	 understand	 this.	When	 you	 call	gen_nums()	 like	 a

function,	it	immediately	returns	a	generator	object:

>>>	sequence	=	gen_nums()

>>>	type(sequence)

<class	'generator'>

The	generator	 function	 is	gen_nums	 -	 what	 we	 define	 and	 then	 call.	A

function	 is	 a	 generator	 function	 if	 and	 only	 if	 it	 uses	 "yield"	 instead	 of
"return".	 The	generator	object	 is	what	 that	 generator	 function	 returns	when
called	 -	sequence,	 in	 this	 case.	A	 generator	 function	will	always	 return	 a

generator	object;	it	can’t	return	anything	else.	And	this	generator	object	is	an
iterator,	which	means	you	can	iterate	through	it	using	next()	or	a	for	loop:

30

chali
Highlight

chali
Highlight

chali
Highlight

>>>	sequence	=	gen_nums()

>>>	next(sequence)

0

>>>	next(sequence)

1

>>>	next(sequence)

2

>>>	next(sequence)

3

>>>	next(sequence)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

StopIteration

>>>	#	Or	in	a	for	loop:

...	for	num	in	gen_nums():	print(num)

...

0

1

2

3

The	flow	of	code	works	like	this:	when	next()	is	called	the	first	time,	or	the

for	 loop	 first	 starts,	 the	 body	 of	gen_nums	 starts	 executing	 at	 the

beginning,	returning	the	value	to	the	right	of	the	yield.

So	 far,	 this	 is	 much	 like	 a	 regular	 function.	 But	 the	 next	 time	next()	 is

called	 -	 or,	 equivalently,	 the	 next	 time	 through	 the	for	 loop	 -	 the	 function

31

chali
Highlight

chali
Highlight

doesn’t	 start	 at	 the	 beginning	 again.	 It	 starts	 on	 the	 line	after	 the	 yield
statement.	Look	at	the	source	of	gen_nums()	again:

def	gen_nums():

				n	=	0

				while	n	<	4:

								yield	n

								n	+=	1

gen_nums	 is	 more	 general	 than	 a	 function	 or	 subroutine.	 It’s	 actually	 a

coroutine.	You	see,	a	regular	function	can	have	several	exit	points	(otherwise
known	as	return	statements).	But	it	has	only	one	entry	point:	each	time	you

call	a	function,	it	always	starts	at	the	first	line	of	the	function	body.

A	coroutine	 is	 like	 a	 function,	 except	 it	 has	 several	 possible	entry	 points.	 It
starts	 with	 the	 first	 line,	 like	 a	 normal	 function.	 But	 when	 it	 "returns",	 the
coroutine	isn’t	exiting,	so	much	as	pausing.	Subsequent	calls	with	next()	-

or	 equivalently,	 the	 next	 time	 through	 the	for	 loop	 -	 start	 at	 that	yield

statement	again,	right	where	it	left	off;	the	re-entry	point	is	the	line	after	the
yield	statement.

And	that’s	the	key:	Each	yield	statement	simultaneously	defines	an	exit

point,	and	a	re-entry	point.

For	generator	objects,	each	time	a	new	value	is	requested,	the	flow	of	control
picks	 up	 on	 the	 line	 after	 the	yield	 statement.	 In	 this	 case,	 the	 next	 line

32

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

increments	the	variable	n,	then	continues	with	the	while	loop.

Notice	 we	 do	 not	 raise	StopIteration	 anywhere	 in	 the	 body	 of

gen_nums().	When	the	function	body	finally	exits	-	after	it	exits	the	while

loop,	 in	 this	 case	 -	 the	 generator	 object	 automatically	 raises
StopIteration.

Again:	each	yield	statement	simultaneously	defines	an	exit	point,	and	a	re-

entry	point.	In	fact,	you	can	have	multiple	yield	statements	in	a	generator:

def	gen_extra_nums():

				n	=	0

				while	n	<	4:

								yield	n

								n	+=	1

				yield	42	#	Second	yield

Here’s	the	output	when	you	use	it:

>>>	for	num	in	gen_extra_nums():

...					print(num)

0

1

2

3

42

33

chali
Highlight

The	second	yield	is	reached	after	the	while	loop	exits.	When	the	function

reaches	the	implicit	return	at	the	end,	the	iteration	stops.	Reason	through	the
code	above,	and	convince	yourself	it	makes	sense.

Let’s	 revisit	 the	 earlier	 example,	 of	 cycling	 through	 a	 sequence	 of	 squares.
This	is	how	we	first	did	it:

def	fetch_squares(max_root):

				squares	=	[]

				for	n	in	range(max_root):

								squares.append(n**2)

				return	squares

MAX	=	5

for	square	in	fetch_squares(MAX):

				do_something_with(square)

As	 an	 exercise,	 pause	 here,	 open	 up	 a	 new	Python	 file,	 and	 see	 if	 you	 can
write	a	gen_squares	generator	function	that	accomplishes	the	same	thing.

Done?	Great.	Here’s	what	it	looks	like:

>>>	def	gen_squares(max_num):

...					for	num	in	range(max_num):

...									yield	num	**	2

...

>>>	MAX	=	5

>>>	for	square	in	gen_squares(MAX):

...					print(square)

0

34

1

4

9

16

Now,	this	gen_squares	has	a	problem	in	Python	2,	but	not	Python	3.	Can

you	spot	it?

Here	it	is:	range	returns	an	iterator	in	Python	3,	but	in	Python	2	it	returns	a

list.	 If	MAX	is	huge,	 that	creates	a	huge	 list	 inside,	killing	scalability.	So	 if
you	are	using	Python	2,	your	gen_squares	needs	to	use	xrange	instead,

which	acts	just	like	Python	3’s	range.

The	 larger	 point	 here	 affects	 all	 versions	 of	 Python.	 Generator	 functions
potentially	have	a	small	memory	footprint,	but	only	if	you	code	intelligently.
When	writing	generator	functions,	be	watchful	for	hidden	bottlenecks.

Now,	 strictly	 speaking,	we	 don’t	need	 generator	 functions	 for	 iteration.	We
just	want	 them,	 because	 they	make	 certain	 patterns	 of	 scalability	 far	 easier.
Now	 that	 we’re	 in	 a	 position	 to	 understand	 it,	 let’s	 look	 at	 the
SquaresIterator	class	again:

#	Same	code	we	saw	earlier.

class	SquaresIterator:

				def	__init__(self,	max_root_value):

								self.max_root_value	=	max_root_value

								self.current_root_value	=	0

				def	__iter__(self):

35

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

								return	self

				def	__next__(self):

								if	self.current_root_value	>=	self.max_root_value:

												raise	StopIteration

								square_value	=	self.current_root_value	**	2

								self.current_root_value	+=	1

								return	square_value

#	You	can	use	it	like	this:

for	square	in	SquaresIterator(5):

				print(square)

Each	 value	 is	 obtained	 by	 invoking	 its	__next__	 method,	 until	 it	 raises

StopIteration.	This	produces	the	same	output;	but	look	at	the	source	for

t h e	SquaresIterator	 class,	 and	 compare	 it	 to	 the	 source	 for	 the

generator	above.	Which	 is	easier	 to	 read?	Which	 is	easier	 to	maintain?	And
when	 requirements	 change,	 which	 is	 easier	 to	 modify	 without	 introducing
errors?	Most	people	find	the	generator	solution	easier	and	more	natural.

Authors	often	use	the	word	"generator"	by	itself,	to	mean	either	the	generator
function,	or	 the	 generator	 object	 returned	 when	 you	 call	 it.	 Typically	 the
writer	 thinks	 it’s	 obvious	 by	 the	 context	 which	 they	 are	 referring	 to;
sometimes	it	is,	sometimes	not.	Sometimes	the	writer	is	not	even	clear	on	the
distinction	 to	begin	with.	But	 it’s	 important:	 just	as	 there	 is	a	big	difference
between	a	function,	and	the	value	it	returns	when	you	call	it,	so	is	there	a	big
difference	between	the	generator	function,	and	the	generator	object	it	returns.

36

In	 your	 own	 thought	 and	 speech,	 I	 encourage	 you	 to	 only	 use	 the	 phrases
"generator	 function"	 and	 "generator	 object",	 so	 you	 are	 always	 clear	 inside
yourself,	and	 in	your	communication.	 (Which	also	helps	your	 teammates	be
more	 clear.)	The	only	 exception:	when	you	 truly	mean	 "generator	 functions
and	objects",	 lumping	them	together,	 then	 it’s	okay	to	 just	say	"generators".
I’ll	lead	by	example	in	this	book.

Generator	Patterns	and	Scalable	Composability
Here’s	a	little	generator	function:

def	matching_lines_from_file(path,	pattern):

				with	open(path)	as	handle:

								for	line	in	handle:

												if	pattern	in	line:

																yield	line.rstrip('\n')

matching_lines_from_file()	 demonstrates	 several	 important

practices	for	modern	Python,	and	is	worth	studying.	It	does	simple	substring
matching	on	lines	of	a	text	file,	yielding	lines	containing	that	substring.

The	 first	 line	 opens	 a	 read-only	 file	 object,	 called	handle.	 If	 you	 haven’t

been	opening	your	file	objects	using	with	statements,	start	today.	The	main

benefit	 is	 that	once	the	with	block	is	exited,	the	file	object	is	automatically

closed	-	even	if	an	exception	causes	a	premature	exit.	It’s	similar	to:

37

chali
Highlight

try:

				handle	=	open(path)

				#	read	from	handle

finally:

				handle.close()

(The	try/finally	 is	 explained	 in	 the	 exceptions	 chapter.)	Next	we	have

for	line	in	handle.	This	useful	idiom,	which	not	many	people	seem

to	know	about,	is	a	special	case	for	text	files.	Each	iteration	through	the	for

loop,	a	new	line	of	text	will	be	read	from	the	underlying	text	file,	and	placed
in	the	line	variable.

Sometimes	people	foolishly	take	another	approach,	which	I	have	to	warn	you
about:

#	Don't	do	this!!

for	line	in	handle.readlines():

.readlines()	 (plural)	 reads	 in	 the	entire	 file,	 parses	 it	 into	 lines,	 and

returns	 a	 list	 of	 strings	 -	 one	 string	 per	 line.	By	 now,	 you	 realize	 how	 this
destroys	the	generator	function’s	scalability.

Another	approach	you	will	sometimes	see,	which	is	scalable,	is	to	use	the	file
object’s	.readline()	method	(singular),	which	manually	returns	lines	one

at	a	time:

38

chali
Highlight

chali
Highlight

chali
Highlight

#	.readline()	reads	and	returns	a	single	line	of	text,

#	or	returns	the	empty	string	at	end-of-file.

line	=	handle.readline()

while	line	!=	'':

				#	do	something	with	line

				#	...

				#	At	the	end	of	the	loop,	read	the	next	line.

				line	=	handle.readline()

But	simply	writing	for	line	in	handle	is	clearer	and	easier.

After	that,	it’s	straightforward:	matching	lines	have	any	trailing	\n-character

stripped,	and	are	yielded	to	the	consumer.	When	writing	generator	functions,
you	 want	 to	 ask	 yourself	 "what	 is	 the	 maximum	memory	 footprint	 of	 this
function,	 and	 how	 can	 I	 minimize	 it?"	You	 can	 think	 of	 scalability	 as
inversely	 proportional	 to	 this	 footprint.	 For
matching_lines_from_file(),	 it	 will	 be	 about	 equal	 to	 the	 size	 of

the	 longest	 line	 in	 the	 text	 file.	 So	 it’s	 appropriate	 for	 the	 typical	 human-
readable	text	file,	whose	lines	are	small.

(It’s	 also	 possible	 to	 point	 it	 to,	 say,	 a	 ten-terabyte	 text	 file	 consisting	 of
exactly	 one	 line.	 If	 you	 expect	 something	 like	that,	 you’ll	 need	 a	 different
approach.)

Now,	suppose	a	log	file	contains	lines	like	this:

39

chali
Highlight

chali
Highlight

chali
Highlight

WARNING:	Disk	usage	exceeding	85%

DEBUG:	User	'tinytim'	upgraded	to	Pro	version

INFO:	Sent	email	campaign,	completed	normally

WARNING:	Almost	out	of	beer

...	and	you	exercise	matching_lines_from_file()	like	so:

for	line	in	

matching_lines_from_file("log.txt","WARNING:"):

				print(line)

That	yields	these	records:

WARNING:	Disk	usage	exceeding	85%

WARNING:	Almost	out	of	beer

Suppose	your	application	needs	that	data	in	dict	form:

{"level":	"WARNING",	"message":	"Disk	usage	exceeding	

85%"}

{"level":	"DEBUG",	"message":

				"User	'tinytim'	upgraded	to	Pro	version"}

We	want	 to	scalably	 transform	the	records	from	one	form	to	another	-	 from
strings	(lines	of	the	log	file),	to	Python	dicts.	So	let’s	make	a	new	generator
function	to	connect	them:

40

chali
Highlight

chali
Highlight

chali
Highlight

def	parse_log_records(lines):

				for	line	in	lines:

								level,	message	=	line.split(":	",	1)

								yield	{"level":	level,	"message":	message}

Now	we	can	connect	the	two:

#	log_lines	is	a	generator	object

log_lines	=	matching_lines_from_file("log.txt",	

"WARNING:")

for	record	in	parse_log_records(log_lines):

				#	record	is	a	dict

				print(record)

Of	course,	parse_log_records()	can	be	used	on	its	own:

with	open("log.txt")	as	handle:

				for	record	in	parse_log_records(handle):

								print(record)

matching_lines_from_file()	 and	parse_log_records()	 are

like	 building	 blocks.	 Properly	 designed,	 they	 can	 be	 used	 to	 build	 different
data	 processing	 streams.	 I	 call	 this	scalable	 composability.	 It	 goes	 beyond
designing	composable	 functions	and	 types.	Ask	yourself	how	you	can	make
the	components	scalable,	and	whatever	is	assembled	out	of	them	scalable	too.

Let’s	 discuss	 a	 particular	 design	 point.	 Both
matching_lines_from_file()	 and	parse_log_records()

41

chali
Highlight

produce	an	iterator.	(Or,	more	specifically,	a	generator	object).	But	they	have
a	 discrepancy	 on	 the	 input	 side:	parse_log_records()	 accepts	 an

iterator,	but	matching_lines_from_file()	requires	a	path	to	a	file	to

read	 from.	This	 means	matching_lines_from_file()	 combines	 two

functions:	read	lines	of	text	from	a	file,	then	filter	those	lines	based	on	some
criteria.

Combining	 functions	 like	 this	 is	 often	what	 you	want	 in	 realistic	 code.	But
when	 designing	 components	 to	 flexibly	 compose	 together,	 inconsistent
interfaces	 like	 this	 can	 be	 limiting.	 Let’s	 break	 up	 the	 services	 in
matching_lines_from_file()	into	two	generator	functions:

def	lines_from_file(path):

				with	open(path)	as	handle:

								for	line	in	handle:

												yield	line.rstrip('\n')

def	matching_lines(lines,	pattern):

				for	line	in	lines:

								if	pattern	in	line:

												yield	line

You	can	compose	these	like	so:

lines	=	lines_from_file("log.txt")

matching	=	matching_lines(lines,	'WARNING:')

for	line	in	matching:

				print(line)

42

chali
Highlight

chali
Highlight

Or	even	redefine	matching_lines_from_file()	in	terms	of	them:

def	matching_lines_from_file(pattern,	path):

				lines	=	lines_from_file(path)

				matching	=	matching_lines(lines,	pattern)

				for	line	in	matching:

								yield	line

Conceptually,	 this	 factored-out	matching_lines	 does	 a	filtering

operation;	 all	 lines	 are	 read	 in,	 and	 a	 subset	 are	 yielded.
parse_log_records()	is	different.	One	input	record	(a	str	line)	maps

to	 exactly	 one	 output	 record	 (a	dict).	 Mathematically,	 it’s	 a	mapping

operation.	Think	of	it	as	a	transformer	or	adapter.	lines_from_file()	is

in	a	third	category;	instead	of	taking	a	stream	as	input,	it	takes	a	completely
different	parameter.	Since	it	still	returns	an	iterator	of	records,	think	of	it	as	a
source.	And	any	real	program	will	eventually	want	to	do	something	with	that
stream,	consuming	it	without	producing	another	iterator;	call	that	a	sink.

You	 need	 all	 these	 pieces	 to	 make	 a	 working	 program.	When	 designing	 a
chainable	 set	 of	 generator	 functions	 like	 this	 -	 or	 even	 better,	 a	 toolkit	 for
constructing	internal	data	pipelines	-	ask	yourself	whether	each	component	is
a	sink,	a	source,	or	whether	it	does	filtering,	or	mapping;	or	whether	it’s	some
combination	 of	 these.	 Just	 asking	 yourself	 this	 question	 leads	 to	 a	 more
usable,	readable,	and	maintainable	codebase.	And	if	you’re	making	a	library

43

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

which	 others	 will	 use,	 you’re	 more	 likely	 to	 end	 up	 with	 a	 toolkit	 so
powerfully	flexible,	people	use	it	to	build	programs	you	never	imagined.

I	want	you	to	notice	something	about	parse_log_records().	As	I	said,

it	 fits	 in	 the	"mapping"	category.	And	notice	 its	mapping	 is	one-to-one:	one
line	of	text	becomes	one	dictionary.	In	other	words,	each	record	in	the	input	-
a	str	-	becomes	exactly	one	record	in	the	output	-	a	dict.

That	 isn’t	 always	 the	 case.	 Sometimes,	 your	 generator	 function	 needs	 to
consume	 several	 input	 records	 to	 create	one	output	 record.	Or	 the	opposite:
one	input	record	yields	several	output	records.

Here’s	an	example	of	the	latter.	Imagine	a	text	file	containing	lines	in	a	poem:
[1]

all	night	our	room	was	outer-walled	with	rain

drops	fell	and	flattened	on	the	tin	roof

and	rang	like	little	disks	of	metal

Let’s	create	a	generator	function,	words_in_text(),	producing	the	words

one	at	a	time.	First	approach:

#	lines	is	an	iterator	of	text	file	lines,

#	e.g.	returned	by	lines_from_file()

def	words_in_text(lines):

				for	line	in	lines:

								for	word	in	line.split():

												yield	word

44

chali
Highlight

This	 generator	 function	 takes	 a	fan	 out	 approach.	 No	 input	 records	 are
dropped,	 which	 means	 it	 doesn’t	 do	 any	 filtering;	 it’s	 still	 purely	 in	 the
"mapping"	category	of	generator	functions.	But	the	mapping	isn’t	one	to	one.
Rather,	one	input	record	produces	one	or	more	output	records.	So,	when	you
run	the	following	code:

poem_lines	=	lines_from_file("poem.txt")

poem_words	=	words_in_text(poem_lines)

for	word	in	poem_words:

				print(word)

...	it	produces	this	output:

all

night

our

room

was

outer-walled

...

That	 first	 input	 record	 -	 "all	 night	 our	 room	was	 outer-walled	 with	 rain"	 -
yields	 eight	 words	 (output	 records).	 Ignoring	 any	 blank	 lines	 in	 the	 poem,
every	line	of	prose	will	produce	at	least	one	-	probably	several	-	words.

The	idea	of	fanning	out	is	interesting,	but	simple	enough.	It’s	more	complex
when	 we	 go	 the	 opposite	 direction:	 fanning	in.	 That	 means	 the	 generator
function	consumes	more	than	one	input	record	to	produce	each	output	record.

45

chali
Highlight

chali
Highlight

Doing	 this	 successfully	 requires	 an	 awareness	 of	 the	 input’s	 structure,	 and
you’ll	typically	need	to	encode	some	simple	parsing	logic.

Imagine	a	text	file	containing	residential	house	sale	data.	Each	record	is	a	set
of	key-value	pairs,	one	pair	per	line,	with	records	separated	by	blank	lines:

address:	1423	99th	Ave

square_feet:	1705

price_usd:	340210

address:	24257	Pueblo	Dr

square_feet:	2305

price_usd:	170210

address:	127	Cochran

square_feet:	2068

price_usd:	320500

To	read	this	data	into	a	form	usable	in	our	code,	what	we	want	is	a	generator
function	-	 let’s	name	it	house_records()	-	which	accepts	a	sequence	of

strings	(lines)	and	parses	them	into	convenient	dictionaries:

>>>	lines_of_house_data	=	lines_from_file("housedata.txt")

>>>	houses	=	house_records(lines_of_house_data)

>>>	#	Fetch	the	first	record.

...	house	=	next(houses)

>>>	house['address']

'1423	99th	Ave'

46

>>>	house	=	next(houses)

>>>	house['address']

'24257	Pueblo	Dr'

How	would	you	create	 this?	 If	practical,	pause	here,	open	up	a	code	editor,
and	see	if	you	can	implement	it.

Okay,	time’s	up.	Here	is	one	approach:

def	house_records(lines):

				record	=	{}

				for	line	in	lines:

								if	line	==	'':

												yield	record

												record	=	{}

												continue

								key,	value	=	line.split(':	',	1)

								record[key]	=	value

				yield	record

Notice	 where	 the	yield	 keywords	 appear.	 The	 last	 line	 of	 the	for	 loop

reads	individual	key-value	pairs.	Starting	with	an	empty	record	dictionary,	it’s
populated	 with	 data	 until	lines	 produces	 an	 empty	 line.	 That	 signals	 the

current	 record	 is	 complete,	 so	 it’s	yield-ed,	 and	 a	 new	 record	 dictionary

created.	The	end	of	the	very	last	record	in	housedata.txt	is	signaled	not

by	 an	 empty	 line,	 but	 by	 the	 end	 of	 the	 file;	 that’s	 why	we	 need	 the	 final
yield	statement.

47

chali
Highlight

chali
Highlight

chali
Highlight

As	 defined,	house_records()	 is	 a	bit	 clunky	 if	we’re	normally	 reading

from	a	text	file.	It	makes	sense	to	define	a	new	generator	function	accepting
just	the	path	to	the	file:

def	house_records_from_file(path):

				lines	=	lines_from_file(path)

				for	house	in	house_records(lines):

								yield	house

#	Then	in	your	program:

for	house	in	house_records_from_file("housedata.txt"):

				print(house["address"])

You	may	have	noticed	many	of	these	examples	have	a	bit	of	boilerplate,	when
one	 generator	 function	 internally	 calls	 another.	 The	 last	 two	 lines	 of
house_records_from_file	say:

				for	house	in	house_records(lines):

								yield	house

Python	3	provides	a	shortcut,	which	lets	you	accomplish	this	in	one	line,	with
the	yield	from	statement:

def	house_records_from_file(path):

				lines	=	lines_from_file(path)

				yield	from	house_records(lines)

48

chali
Highlight

chali
Highlight

Even	 though	 "yield	 from"	 is	 two	 words,	 semantically	 it’s	 like	 a	 single
keyword,	 and	 distinct	 from	yield.	 The	yield	from	 statement	 is	 used

specifically	 in	 generator	 functions,	 when	 they	 yield	 values	 directly	 from
another	 generator	 object	 (or,	 equivalently,	 by	 calling	 another	 generator
function).	 Using	 it	 often	 simplifies	 your	 code,	 as	 you	 see	 in
house_records_from_file().	Going	back	a	bit,	here’s	how	it	works

with	matching_lines_from_file():

def	matching_lines_from_file(pattern,	path):

				lines	=	lines_from_file("log.txt")

				yield	from	matching_lines(lines,	'WARNING:')

The	 formal	 name	 for	 what	yield	 from	 does	 is	 "delegating	 to	 a	 sub-

generator",	and	instills	a	deeper	connection	between	the	containing	and	inner
generator	 objects.	In	 particular,	 generator	 objects	 have	 certain	 methods	 -
send,	throw	and	close	-	for	passing	information	back	into	the	context	of

the	running	generator	function.	I	won’t	cover	them	in	this	edition	of	the	book,
as	 they	are	not	 currently	widely	used;	you	can	 learn	more	by	 reading	PEPs
342	 and	 380.[2]	 If	 you	 do	 use	 them,	yield	from	 becomes	 necessary	 to

enable	the	flow	of	information	back	into	the	scope	of	the	running	coroutine.

Python	is	Filled	With	Iterators
Let’s	look	at	Python	3	dictionaries:[3]

49

▪

▪

▪

>>>	calories	=	{

...					"apple":	95,

...					"slice	of	bacon":	43,

...					"cheddar	cheese":	113,

...					"ice	cream":	15,	#	You	wish!

...	}

>>>	items	=	calories.items()

>>>	type(items)

<class	'dict_items'>

So	what	is	this	dict_items	object	returned	by	calories.items()?	It

turns	out	to	be	what	Python	calls	a	view.	There	is	not	any	kind	of	base	view
type;	rather,	an	object	quacks	like	a	dictionary	view	if	it	supports	three	things:

len(view)	returns	the	number	of	items,

iter(view)	returns	an	iterator	over	the	key-value	pairs,	and

(key,	value)	in	view	 returns	 True	 if	 that	key-value	 pair	 is	 in

the	dictionary,	else	False.

In	other	words,	a	dictionary	view	is	iterable,	with	a	couple	of	bonus	features.
It	also	dynamically	updates	if	its	source	dictionary	changes:

>>>	items	=	calories.items()

>>>	len(items)

4

>>>	calories['orange']	=	50

>>>	len(items)

5

50

chali
Highlight

chali
Highlight

chali
Highlight

>>>	('orange',	50)	in	items

True

>>>	('orange',	20)	in	items

False

Dictionaries	 also	 have	.keys()	 and	.values().	 Like	.items(),	 they

each	return	a	view.	But	instead	of	key-value	pairs,	they	only	contain	keys	or
values,	respectively:

>>>	foods	=	calories.keys()

>>>	counts	=	calories.values()

>>>	'yogurt'	in	foods

False

>>>	100	in	counts

False

>>>	calories['yogurt']	=	100

>>>	'yogurt'	in	foods

True

>>>	100	in	counts

True

In	 Python	 2	 (explained	 more	 below),	items()	 returns	 a	 list	 of	 key-value

tuples,	rather	than	a	view;	Python	2	also	has	an	iteritems()	method	that

returns	an	iterator	(rather	than	an	iterable	view	object).	Python	3’s	version	of
the	items()	method	essentially	obsoletes	both	of	these.	When	you	do	need

a	 list	 of	 key-value	 pairs	 in	 Python	 3,	 just	 write
list(calories.items()).

51

chali
Highlight

Iteration	has	snuck	into	many	places	in	Python.	The	built-in	range	function

returns	an	iterable:

>>>	seq	=	range(3)

>>>	type(seq)

<class	'range'>

>>>	for	n	in	seq:	print(n)

0

1

2

The	built-in	map,	filter,	and	zip	functions	all	return	iterators:

>>>	numbers	=	[1,	2,	3]

>>>	big_numbers	=	[100,	200,	300]

>>>	def	double(n):

...					return	2	*	n

>>>	def	is_even(n):

...					return	n	%	2	==	0

>>>	mapped	=	map(double,	numbers)

>>>	mapped

<map	object	at	0x1013ac518>

>>>	for	num	in	mapped:	print(num)

2

4

6

>>>	filtered	=	filter(is_even,	numbers)

>>>	filtered

<filter	object	at	0x1013ac668>

52

chali
Highlight

▪

▪

▪

>>>	for	num	in	filtered:	print(num)

2

>>>	zipped	=	zip(numbers,	big_numbers)

>>>	zipped

<zip	object	at	0x1013a9608>

>>>	for	pair	in	zipped:	print(pair)

(1,	100)

(2,	200)

(3,	300)

Notice	 that	mapped	is	something	called	a	"map	object",	rather	than	a	list	of

the	results	of	the	calculation;	and	similar	for	filtered	and	zipped.	These

are	 all	 iterators	 -	 giving	 you	 all	 the	 benefits	 of	 iteration,	 built	 into	 the
language.

Python	2’s	Differences

For	Python	2,	I’ll	start	with	some	recommendations,	before	explaining	them:

With	 dictionaries,	 always	 use	viewitems()	 rather	 than	items()	 or

iteritems().	The	only	exception:	if	you	truly	need	a	list	of	tuples,	use

items().

Likewise	 for	viewkeys()	 and	viewvalues(),	 rather	 than	keys(),

iterkeys(),	values(),	and	itervalues().

Use	xrange()	 instead	of	range(),	unless	you	have	a	special	need	for

53

▪

an	actual	list.

Be	aware	that	map,	filter,	and	zip	create	lists;	if	your	data	may	grow

large,	 use	imap,	 ifilter	 or	izip	 from	 the	itertools	 module

instead.

These	 differently	 named	 methods	 and	 functions	 essentially	 have	 the	 same
behavior	 as	 Python	 3’s	more	 scalable	 versions.	 Python	 2’s	xrange	 is	 just

like	 Python	 3’s	range;	 Python	 2’s	itertools.imap	 is	 just	 like	Python

3’s	map;	and	so	on.

Let’s	 examine	 Python	 2’s	 dictionary	 methods.	 In	 Python	 2,
calories.items()	 returns	 a	 list	 of	(key,	value)	 tuples.	 So	 if	 the

dictionary	 has	 10,000	 keys,	 you’d	 get	 a	 list	 of	 10,000	 tuples.	 Similarly,
calories.keys()	returns	a	list	of	keys;	calories.values()	returns

a	 list	 of	 values.	The	problems	with	 this	will	be	obvious	 to	you	by	now:	 the
loop	blocks	until	you	create	and	populate	a	list,	which	is	immediately	thrown
away	once	the	loop	exits.

Python	2	addressed	this	by	introducing	two	other	methods:	iteritems(),

returning	 an	 iterator	 over	 the	 key-value	 tuples;	 and	 (later)	viewitems(),

which	 returned	 a	 view	 -	 an	 iterable	 type.	 Similarly,	keys()	 gave	 a	 list	 of

keys,	 and	 they	added	iterkeys()	 and	 then	viewkeys();	and	again	for

values(),	itervalues(),	and	viewvalues().

54

In	Python	3,	what	used	to	be	called	viewitems()	was	renamed	items(),

and	 the	 old	items()	 and	iteritems()	 went	 away.	 Similarly,	keys()

and	values()	were	changed	to	return	views	instead	of	lists.

For	your	own	Python	2	code,	I	recommend	you	start	using	viewitems(),

except	 when	 you	 have	 an	 explicit	 reason	 to	 do	 otherwise.	 Using
iteritems()	 is	 certainly	 better	 than	 using	items(),	 and	 for	 Python	 2

code,	generally	works	just	as	well	as	viewitems().	However,	if	you	ever

decide	to	upgrade	that	codebase	with	2to3,	the	resulting	code	will	be	closer

to	 your	 original	 program.[4]	 Python	 2’s	viewitems	 basically	 obsoleted

iteritems,	which	is	why	the	latter	has	no	equivalent	in	Python	3.

The	situation	with	range	is	simpler.	Python	2’s	original	range()	function

returned	 a	 list;	 later,	xrange()	 was	 added,	 returning	 an	 iterable,	 and

practically	 speaking	 obsoleting	 Python	 2’s	range().	 But	 many	 people

continue	to	use	range(),	for	a	range	(ha!)	of	reasons.	Python	3’s	version	of

range()	 is	 essentially	 the	 same	 as	 Python	 2’s	xrange(),	 and	Python	 3

has	 no	 function	 named	xrange.	 (Of	 course,	list(range(…))	will	give

you	an	actual	list,	if	you	need	it.)

map,	filter,	 and	zip	 are	well	 used	 in	 certain	 circles.	 If	 you	want	 your

Python	2	code	using	these	functions	to	be	fully	forward-compatible,	you	have
to	 go	 to	 a	 little	 more	 trouble:	 their	 iterator-equivalents	 are	 all	 in	 the
itertools	module.	So,	instead	of	this:

55

mapped	=	map(double,	numbers)

you	will	need	to	write	this:

from	itertools	import	imap

mapped	=	imap(double,	numbers)

The	2to3	program	will	convert	Python	2’s	imap(f,	items)	 to	map(f,

items),	but	will	convert	Python	2’s	map(f,	items)	 to	list(map(f,

items)).	The	itertools	module	similarly	has	ifilter	and	izip,	for

which	the	same	patterns	apply.

It’s	important	to	realize	that	everything	described	for	Python	3	also	applies	to
Python	 2.7,	if	 you	 use	 the	 different	 names	 of	 the	 relevant	 methods	 and
functions.	And	 that	 is	what	 I	 recommend	you	do,	 so	you	get	 the	 scalability
benefits	of	iterators,	and	have	an	easier	transition	to	Python	3.

The	Iterator	Protocol
This	 optional	 section	 explains	 Python’s	iterator	 protocol	 in	 formal	 detail,
giving	you	a	precise	and	low-level	understanding	of	how	generators,	iterators,
and	 iterables	all	work.	For	 the	day-to-day	coding	of	most	programmers,	 it’s
not	nearly	as	important	as	everything	else	in	this	chapter.	That	said,	you	need
this	 information	 to	 implement	 your	 own,	 custom	 iterable	 collection	 types.
Personally,	 I	 also	 find	 knowing	 the	 protocol	 helps	 me	 reason	 through

56

▪

▪

▪

▪

iteration-related	issues	and	edge	cases;	by	knowing	these	details,	I’m	able	to
quickly	 troubleshoot	 and	 fix	 certain	 bugs	 that	 might	 otherwise	 eat	 up	 my
afternoon.	If	this	all	sounds	valuable	to	you,	keep	reading;	otherwise,	feel	free
to	skip	to	the	next	chapter.

As	mentioned,	 Python	makes	 a	 distinction	 between	iterators,	 versus	 objects
that	are	iterable.	The	difference	is	subtle	to	begin	with,	and	frankly	it	doesn’t
help	that	the	two	words	sound	nearly	identical.	Keep	clear	in	your	mind	that
"iterator"	 and	 "iterable"	 are	 distinct	 but	 related	 concepts,	 and	 the	 following
will	be	easier	to	understand.

Informally,	an	iterator	is	something	you	can	pass	to	next(),	or	use	exactly

once	 in	 a	for	 loop.	More	 formally,	 an	 object	 in	 Python	 3	 is	 an	 iterator	 if

follows	the	iterator	protocol.	And	an	object	follows	the	iterator	protocol	if	it
meets	the	following	criteria:

It	defines	a	method	named	__next__,	called	with	no	arguments.

Each	 time	__next__()	 is	 called,	 it	 produces	 the	 next	 item	 in	 the

sequence.

Until	 all	 items	 have	 been	 produced.	 Then,	 subsequent	 calls	 to
__next__()	raise	StopIteration.

It	 also	 defines	 a	 boilerplate	 method	 named	__iter__,	 called	 with	 no

arguments,	 and	 returning	 the	 same	 iterator.	 Its	 body	 is	 literally	return

self.

57

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

Any	object	with	 these	methods	can	call	 itself	a	Python	iterator.	You	are	not
intended	to	call	the	__next__()	method	directly.	Instead,	you	will	use	the

built-in	next()	function.	To	understand	better,	here	is	a	simplified	way	you

might	write	your	own	next()	function:

def	next(it,	default=None):

				try:

								return	it.__next__()

				except	StopIteration:

								if	default	is	None:

												raise

								return	default

(This	version	will	not	let	you	specify	None	as	a	default	value;	the	real	built-in

next()	will.	Otherwise,	it’s	essentially	accurate.)

All	the	above	has	one	difference	in	Python	2:	the	iterator’s	method	is	named
.next()	 rather	 than	.__next__().	 Abstracting	 over	 this	 difference	 is

one	 reason	 to	 use	 the	built-in,	 top-level	next()	 function.	Of	course,	using

next()	 lets	 you	 specify	 a	 default	 value,	 whereas	.__next__()	 and

.next()	do	not.

Now,	 all	 the	 above	 is	 for	 the	 "iterator".	 Let’s	 explain	 the	 other	 word,
"iterable".	 Informally,	 an	 object	 is	iterable	 if	 it	 knows	 how	 to	 create	 an
iterator	 over	 its	 contents,	 which	 you	 can	 access	 with	 the	 built-in	iter()

58

chali
Highlight

chali
Highlight

▪

▪

function.	More	formally,	a	Python	container	object	is	iterable	if	it	meets	one
of	these	two	criteria:

It	 defines	 a	 method	 called	__iter__(),	 which	 creates	 and	 returns	 an

iterator	over	the	elements	in	the	container;	or

it	 follows	 the	sequence	protocol.	 This	means	 it	 defines	__getitem__	 -

the	magic	method	 for	 square	 brackets	 -	 and	 lets	 you	 reference	foo[0],

foo[1],	etc.,	raising	an	IndexError	once	you	go	past	the	last	element.

(Notice	"iterator"	is	a	noun,	while	"iterable"	is	usually	an	adjective.	This	can
help	you	remember	which	is	which.)

When	implementing	your	own	container	type,	you	probably	want	to	make	it
iterable,	so	you	and	others	can	use	it	in	a	for	loop.	Depending	on	the	nature

of	the	container,	it’s	often	easiest	to	implement	the	sequence	protocol.	As	an
example,	consider	this	simple	UniqueList	type,	which	is	a	kind	of	hybrid

between	a	list	and	a	set:

class	UniqueList:

				def	__init__(self,	items):

								self.items	=	[]

								for	item	in	items:

												self.append(item)

				def	append(self,	item):

								if	item	not	in	self.items:

59

chali
Highlight

chali
Highlight

chali
Highlight

												self.items.append(item)

				def	__getitem__(self,	index):

								return	self.items[index]

Use	it	like	this:

>>>	u	=	UniqueList([3,7,2,9,3,4,2])

>>>	u.items

[3,	7,	2,	9,	4]

>>>	u[3]

9

>>>	u[42]

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	10,	in	__getitem__

IndexError:	list	index	out	of	range

The	__getitem__	 method	 implements	 square-bracket	 access;	 basically,

Python	 translates	u[3]	 into	u.__getitem__(3).	 We’ve	 programmed

this	 object’s	 square	 brackets	 to	 operate	much	 like	 a	 normal	 list,	 in	 that	 the
initial	element	is	at	index	0,	and	you	get	subsequent	elements	with	subsequent
integers,	 not	 skipping	 any.	 And	 when	 you	 go	 past	 the	 end,	 it	 raises
IndexError.	 If	 an	 object	 has	 a	__getitem__	method	behaving	 in	 just

this	way,	iter()	knows	how	to	create	an	iterator	over	it:

>>>	u_iter	=	iter(u)

>>>	type(u_iter)

<class	'iterator'>

>>>	for	num	in	u_iter:	print(num)

60

3

7

2

9

4

Notice	we	get	a	 lot	of	 this	behavior	for	free,	simply	because	we’re	using	an
actual	 list	 internally	 (and	 thus	delegating	much	of	 the	__getitem__	 logic

to	it).	That’s	a	clue	for	you,	whenever	you	make	a	custom	collection	that	acts
like	 a	 list	 -	 or	 one	 of	 the	 other	 standard	 collection	 types.	 If	 your	 object
internally	stores	its	data	in	one	of	the	standard	data	types,	you’ll	often	have	an
easier	time	mimicking	its	behavior.

Implementing	the	sequence	protocol	-	i.e.,	writing	a	__getitem__	method

which	 acts	 like	 a	 list’s	 -	 is	 one	way	 to	make	 your	 class	 iterable.	The	 other
involves	writing	 an	__iter__	method.	When	called	with	no	arguments,	 it

must	return	some	object	which	follows	the	iterator	protocol,	described	above.
In	 the	 worst	 case,	 you’ll	 need	 to	 implement	 something	 like	 the
SquaresIterator	 class	 from	 earlier	 in	 this	 chapter,	 with	 its	 own

__next__	 and	__iter__	methods.	 But	 usually	 you	 don’t	 have	 to	work

that	 hard,	 because	 you	 can	 simply	 return	 a	 generator	 object	 instead.	 That
means	__iter__	 is	 a	 generator	 function	 itself,	 or	 it	 internally	 calls	 some

other	generator	function,	returning	its	value.

61

Both	iterables	and	iterators	must	have	an	__iter__	method.	Both	are	called

with	no	argument,	and	both	return	an	iterator	object.	The	only	difference:	the
one	for	the	iterator	returns	its	self,	while	an	iterable’s	will	create	and	return

a	new	iterator.	And	if	you	call	it	twice,	you	get	two	different	iterators.

This	 similarity	 is	 intentional,	 to	 simplify	control	 code	 that	 can	accept	 either
iterators	 or	 iterables.	Here’s	 the	mental	model	 you	 can	 safely	 follow:	when
Python’s	 runtime	 encounters	 a	for	 loop,	 it	 will	 start	 by	 invoking

iter(sequence).	 This	always	 returns	 an	 iterator:	 either	sequence

itself,	 or	 (if	sequence	 is	 only	 iterable)	 the	 iterator	 created	 by

sequence.__iter__().

Iterables	 are	 everywhere	 in	 Python.	Almost	 all	 built-in	 collection	 types	 are
iterable:	list,	tuple,	and	set,	and	even	dict	(though	more	often	you’ll

want	 to	 use	dict.items()	 or	dict.viewitems()).	 In	 your	 own

custom	 collection	 classes,	 sometimes	 the	 easiest	 way	 to	 implement
__iter__()	 actually	 involves	 using	iter().	 For	 instance,	 this	will	 not

work:

class	BrokenInLoops:

				def	__init__(self):

								self.items	=	[7,	3,	9]

				def	__iter__(self):

								return	self.items

62

If	you	try	it,	you	get	a	TypeError:

>>>	items	=	BrokenInLoops()

>>>	for	item	in	items:

...					print(item)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	iter()	returned	non-iterator	of	type	'list'

It	doesn’t	work	because	__iter__()	is	supposed	to	return	an	iterator,	but	a

list	object	is	not	an	iterator;	it	is	simply	iterable.	You	can	fix	this	with	a	one-
line	change:	use	iter()	to	create	an	iterator	object	inside	of	__iter__(),

and	return	that	object:

class	WorksInLoops:

				def	__init__(self):

								self.items	=	[7,	3,	9]

				def	__iter__(self):

								#	This	class	is	identical	to	BrokenInLoops,

								#	except	for	this	next	line.

								return	iter(self.items)

This	 makes	WorksInLoops	 itself	 iterable,	 because	__iter__	 returns	an

actual	 iterator	object	 -	making	WorksInLoops	 follow	the	 iterator	protocol

correctly.	That	__iter__	method	generates	a	fresh	iterator	each	time:

63

>>>	items	=	WorksInLoops()

>>>	for	item	in	items:

...					print(item)

7

3

9

64

1	From	"Summer	Rain",	by	Amy	Lowell.	https://www.poets.org/poetsorg/poem/summer-rain

2	https://www.python.org/dev/peps/pep-0342/	and	https://www.python.org/dev/peps/pep-0380/

3	If	you’re	more	interested	in	Python	2,	follow	along.	Every	concept	in	this	section	fully	applies
to	Python	2.7,	with	syntax	differences	we’ll	discuss	at	the	end.

4	2to3	will	 replace	both	iteritems()	 and	viewitems()	with	items();	but	the	precise

semantics	 of	 the	 converted	 program	 will	 more	 closely	 match	 your	 Python	 2	 code	 if	 you	 use
viewitems()	to	begin	with.

65

https://www.poets.org/poetsorg/poem/summer-rain
https://www.python.org/dev/peps/pep-0342/
https://www.python.org/dev/peps/pep-0380/

CREATING	COLLECTIONS
WITH	COMPREHENSIONS

A	 list	 comprehension	 is	 a	 high	 level,	 declarative	 way	 to	 create	 a	 list	 in
Python.	They	look	like	this:

>>>	squares	=	[n*n	for	n	in	range(6)]

>>>	print(squares)

[0,	1,	4,	9,	16,	25]

This	is	exactly	equivalent	to	the	following:

>>>	squares	=	[]

>>>	for	n	in	range(6):

...					squares.append(n*n)

>>>	print(squares)

[0,	1,	4,	9,	16,	25]

Notice	that	in	the	first	example,	what	you	type	is	declaring	what	kind	of	list
you	want,	while	the	second	is	specifying	how	to	create	it.	That’s	why	we	say

66

chali
Highlight

it	is	high-level	and	declarative:	it’s	as	if	you	are	stating	what	kind	of	list	you
want	created,	and	then	let	Python	figure	out	how	to	build	it.

Python	lets	you	write	other	kinds	of	comprehensions	other	than	lists.	Here’s	a
simple	dictionary	comprehension,	for	example:

>>>	blocks	=	{	n:	"x"	*	n	for	n	in	range(5)	}

>>>	print(blocks)

{0:	'',	1:	'x',	2:	'xx',	3:	'xxx',	4:	'xxxx'}

This	is	exactly	equivalent	to	the	following:

>>>	blocks	=	dict()

>>>	for	n	in	range(5):

...					blocks[n]	=	"x"	*	n

>>>	print(blocks)

{0:	'',	1:	'x',	2:	'xx',	3:	'xxx',	4:	'xxxx'}

The	 main	 benefits	 of	 comprehensions	 are	 readability	 and	 maintainability.
Most	 people	 find	 them	very	 readable;	 even	 developers	 who	 have	 never
encountered	them	before	can	usually	correctly	guess	what	it	means.	And	there
is	a	deeper,	cognitive	benefit:	once	you’ve	practiced	with	them	a	bit,	you	will
find	you	can	write	them	with	very	little	mental	effort	-	keeping	more	of	your
attention	free	for	other	tasks.

Beyond	lists	and	dictionaries,	there	are	several	other	forms	of	comprehension
you	will	learn	about	it	in	this	chapter.	As	you	become	comfortable	with	them,

67

chali
Highlight

chali
Highlight

you	will	 find	 them	 to	be	versatile	 and	very	Pythonic	 -	meaning,	you’ll	 find
they	 fit	 well	 into	 many	 other	 Python	 idioms	 and	 constructs,	 lending	 new
expressiveness	and	elegance	to	your	code.

List	Comprehensions
A	 list	 comprehension	 is	 the	 most	 widely	 used	 and	 useful	 kind	 of
comprehension,	 and	 is	 essentially	 a	 way	 to	 create	 and	 populate	 a	 list.	 Its
structure	looks	like:

[EXPRESSION	for	VARIABLE	in	SEQUENCE]

EXPRESSION	 is	 any	 Python	 expression,	 though	 in	 useful	 comprehensions,
the	expression	typically	has	some	variable	in	it.	That	variable	is	stated	in	the
VARIABLE	 field.	SEQUENCE	 defines	 the	 source	 values	 the	 variable
enumerates	through,	creating	the	final	sequence	of	calculated	values.

Here’s	the	simple	example	we	glimpsed	earlier:

>>>	squares	=	[n*n	for	n	in	range(6)]

>>>	type(squares)

<class	'list'>

>>>	print(squares)

[0,	1,	4,	9,	16,	25]

Notice	the	result	is	just	a	regular	list.	In	squares,	the	expression	is	n*n;	the

variable	 is	n;	 and	 the	 source	 sequence	 is	range(6).	 The	 sequence	 is	 a

68

chali
Highlight

chali
Highlight

▪

▪

▪

▪

▪

range	 object;	 in	 fact,	 it	 can	 be	 any	 iterable…		 another	 list	 or	 tuple,	 a
generator	object,	or	something	else.

The	expression	part	can	be	anything	that	reduces	to	a	value:

Arithmetic	expressions	like	n+3

A	function	call	like	f(m),	using	m	as	the	variable

A	slice	operation	(like	s[::-1],	to	reverse	a	string)

Method	calls	(foo.bar(),	iterating	over	a	sequence	of	objects)

And	more.

Some	complete	examples:

>>>	#	First	define	some	source	sequences...

...	pets	=	["dog",	"parakeet",	"cat",	"llama"]

>>>	numbers	=	[9,	-1,	-4,	20,	11,	-3]

>>>	#	And	a	helper	function...

...	def	repeat(s):

...					return	s	+	s

...

>>>	#	Now,	some	list	comprehensions:

...	[2*m+3	for	m	in	range(10,	20,	2)]

[23,	27,	31,	35,	39]

>>>	[abs(num)	for	num	in	numbers]

[9,	1,	4,	20,	11,	3]

>>>	[10	-	x	for	x	in	numbers]

[1,	11,	14,	-10,	-1,	13]

>>>	[pet.lower()	for	pet	in	pets]

69

['dog',	'parakeet',	'cat',	'llama']

>>>	["The	"	+	pet	for	pet	in	sorted(pets)]

['The	cat',	'The	dog',	'The	llama',	'The	parakeet']

>>>	[repeat(pet)	for	pet	in	pets]

['dogdog',	'parakeetparakeet',	'catcat',	'llamallama']

Notice	how	all	these	fit	the	same	structure.	They	all	have	the	keywords	"for"
and	 "in";	 those	 are	 required	 in	 Python,	 for	 any	 kind	 of	 comprehension	 you
may	 write.	 These	 are	 interleaved	 among	 three	 fields:	 the	 expression;	 the
variable	(i.e.,	the	identifier	from	which	the	expression	is	composed);	and	the
source	sequence.

The	order	of	elements	in	the	final	list	is	determined	by	the	order	of	the	source
sequence.	But	you	can	filter	out	elements	by	adding	an	"if"	clause:

>>>	def	is_palindrome(s):

...					return	s	==	s[::-1]

...

>>>	pets	=	["dog",	"parakeet",	"cat",	"llama"]

>>>	numbers	=	[9,	-1,	-4,	20,	11,	-3]

>>>	words	=	["bib",	"bias",	"dad",	"eye",	"deed",	"tooth"]

>>>

>>>	[n*2	for	n	in	numbers	if	n	%	2	==	0]

[-8,	40]

>>>

>>>	[pet.upper()	for	pet	in	pets	if	len(pet)	==	3]

['DOG',	'CAT']

>>>

>>>	[n	for	n	in	numbers	if	n	>	0]

[9,	20,	11]

70

chali
Highlight

>>>

>>>	[word	for	word	in	words	if	is_palindrome(word)]

['bib',	'dad',	'eye',	'deed']

The	structure	is

[EXPR	for	VAR	in	SEQUENCE	if	CONDITION]

where	CONDITION	 is	 an	 expression	 that	 evaluates	 to	True	 or	False,

depending	on	the	variable.[1]	Note	 that	 it	can	be	either	a	 function	applied	 to
the	 variable	 (is_palindrome(word)),	 or	 something	 more	 complex

(len(pet)	==	3).	 Choosing	 to	 use	 a	 function	 can	 improve	 readability,

and	also	let	you	apply	filter	logic	whose	code	won’t	fit	in	one	line.

A	list	comprehension	must	always	have	the	"for"	word,	even	if	the	beginning
expression	is	just	the	variable	itself.	For	example,	when	we	say:

>>>	[word	for	word	in	words	if	is_palindrome(word)]

['bib',	'dad',	'eye',	'deed']

Sometimes	people	think	word	for	word	in	words	seems	redundant	(it

does),	and	try	to	shorten	it…		but	that	doesn’t	work:

>>>	[word	in	words	if	is_palindrome(word)]

		File	"<stdin>",	line	1

				[word	in	words	if	is_palindrome(word)]

71

chali
Highlight

																																									^

SyntaxError:	invalid	syntax

>>>

Formatting	For	Readability	(And	More)
Realistic	list	comprehensions	tend	to	be	too	long	to	fit	nicely	on	a	single	line.
And	 they	 are	 composed	 of	 distinct	 logical	 parts,	 which	 can	 vary
independently	as	 the	code	evolves.	This	creates	a	couple	of	 inconveniences,
which	 are	 solved	 by	 a	 very	 convenient	 fact:	Python’s	 normal	 rules	 of
whitespace	are	suspended	inside	the	square	brackets.	You	can	exploit	this	to
make	 them	more	 readable	 and	maintainable,	 splitting	 them	 across	 multiple
lines:

def	double_short_words(words):

				return	[word	+	word

													for	word	in	words

													if	len(word)	<	5]

Another	variation,	which	some	people	prefer:

def	double_short_words(words):

				return	[

								word	+	word

								for	word	in	words

								if	len(word)	<	5

]

72

chali
Highlight

chali
Highlight

chali
Highlight

What	 I’ve	 done	 here	 is	 split	 the	 comprehension	 across	 separate	 lines.	 You
can,	 and	 should,	 do	 this	 with	 any	 substantial	 comprehension.	 It’s	 great	 for
several	reasons,	the	most	important	being	the	instant	gain	in	readability.	This
comprehension	has	three	separate	ideas	expressed	inside	the	square	brackets:
the	expression	(word	+	word);	 the	sequence	(for	word	in	words);

and	the	filtering	clause	(if	len(word)	<	5).	These	are	logically	separate

aspects,	 and	 by	 splitting	 them	 across	 different	 lines,	 it	 takes	 less	 cognitive
effort	 for	 a	 human	 to	 read	 and	 understand	 than	 the	 one-line	 version.	 It’s
effectively	pre-parsed	for	you,	as	you	read	the	code.

There’s	another	benefit:	version	control	and	code	review	diffs	are	more	pin-
pointed.	 Imagine	you	and	 I	 are	on	 the	 same	development	 team,	working	on
this	 code	 base	 in	 different	 feature	 branches.	 In	 my	 branch,	 I	 change	 the
expression	 to	"word	 +	 word	 +	 word";	 in	 yours,	 you	 change	 the

threshold	 to	"len(word)	 <	 7".	 If	 the	 comprehension	 is	 on	 one	 line,

version	 control	 tools	 will	 perceive	 this	 as	 a	 merge	 conflict,	 and	 whoever
merges	last	will	have	to	manually	fix	it.[2]	But	since	this	list	comprehension	is
split	across	three	lines,	our	source	control	tool	can	automatically	merge	both
our	 branches.	 And	 if	 we’re	 doing	 code	 reviews	 like	 we	 should	 be,	 the
reviewer	can	identify	the	precise	change	immediately,	without	having	to	scan
the	line	and	think.

Multiple	Sources	and	Filters

73

You	 can	 have	 several	for	 VAR	 in	 SEQUENCE	 clauses.	 This	 lets	 you

construct	 lists	 based	 on	 pairs,	 triplets,	 etc.,	 from	 two	 or	 more	 source
sequences:

>>>	colors	=	["orange",	"purple",	"pink"]

>>>	toys	=	["bike",	"basketball",	"skateboard",	"doll"]

>>>

>>>	[color	+	"	"	+	toy

...			for	color	in	colors

...			for	toy	in	toys]

['orange	bike',	'orange	basketball',	'orange	skateboard',

	'orange	doll',	'purple	bike',	'purple	basketball',

	'purple	skateboard',	'purple	doll',	'pink	bike',

	'pink	basketball',	'pink	skateboard',	'pink	doll']

Every	pair	 from	 the	 two	sources,	colors	 and	toys,	 is	used	 to	calculate	a

value	 in	 the	 final	 list.	 That	 final	 list	 has	 12	 elements,	 the	 product	 of	 the
lengths	of	the	two	source	lists.

I	want	you	to	notice	that	the	two	for	clauses	are	independent	of	each	other;

colors	 and	toys	 are	 two	unrelated	 lists.	Using	multiple	for	clauses	can

sometimes	 take	 a	 different	 form,	 where	 they	 are	 more	 interdependent.
Consider	this	example:

>>>	ranges	=	[range(1,7),	range(4,12,3),	range(-5,9,4)]

>>>	[float(num)

...			for	subrange	in	ranges

74

chali
Highlight

chali
Highlight

...			for	num	in	subrange]

[1.0,	2.0,	3.0,	4.0,	5.0,	6.0,	4.0,	7.0,	10.0,	-5.0,

-1.0,	3.0,	7.0]

The	source	sequence	-	"ranges"	-	is	a	list	of	range	objects.[3]	Now,	this	list

comprehension	 has	 two	for	 clauses	 again.	 But	 notice	 one	 depends	 on	 the

other.	The	source	of	the	second	is	the	variable	for	the	first!

It’s	not	like	the	colorful-toys	example,	whose	for	clauses	are	independent	of

each	other.	When	chained	together	this	way,	order	matters:

>>>	[float(num)

...			for	num	in	subrange

...			for	subrange	in	ranges]

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	2,	in	<module>

NameError:	name	'subrange'	is	not	defined

Python	parses	 the	 list	comprehension	 from	left	 to	 right.	 If	 the	 first	clause	 is
for	num	in	subrange,	at	that	point	subrange	is	not	defined.	So	you

have	 to	 put	for	subrange	in	ranges	first.	You	can	chain	more	than

two	for	clauses	together	like	this;	the	first	one	will	just	need	to	reference	a

previously-defined	 source,	 and	 the	 others	 can	 use	 sources	 defined	 in	 the
previous	for	clause,	like	subrange	is	defined.

Now,	that’s	for	chained	for	clauses.	If	the	clauses	are	independent,	does	the

order	 matter	 at	 all?	 It	 does,	 just	 in	 a	 different	 way.	What’s	 the	 difference

75

chali
Highlight

chali
Highlight

chali
Highlight

between	these	two	list	comprehensions:

>>>	colors	=	["orange",	"purple",	"pink"]

>>>	toys	=	["bike",	"basketball",	"skateboard",	"doll"]

>>>

>>>	[color	+	"	"	+	toy

...			for	color	in	colors

...			for	toy	in	toys]

['orange	bike',	'orange	basketball',	'orange	skateboard',

'orange	doll',	'purple	bike',	'purple	basketball',

'purple	skateboard',	'purple	doll',	'pink	bike',

'pink	basketball',	'pink	skateboard',	'pink	doll']

>>>

>>>	[color	+	"	"	+	toy

...			for	toy	in	toys

...			for	color	in	colors]

['orange	bike',	'purple	bike',	'pink	bike',	'orange

basketball',	'purple	basketball',	'pink	basketball',

'orange	skateboard',	'purple	skateboard',	'pink

skateboard',	'orange	doll',	'purple	doll',	'pink	doll']

The	order	here	doesn’t	matter	 in	 the	 sense	 it	 does	 for	 chained	for	 clauses,

where	 you	must	 put	 things	 in	 a	 certain	 order,	 or	 your	 program	 won’t	 run.
Here,	you	have	a	choice.	And	that	choice	does	effect	the	order	of	elements	in
the	 final	 comprehension.	 The	 first	 element	 in	 each	 is	 "orange	 bike".	 And
notice	 the	 second	 element	 is	 different.	 Think	 a	 moment,	 and	 ask	 yourself:
why?	Why	is	the	first	element	the	same	in	both	comprehensions?	And	why	is
it	only	the	second	element	that’s	different?

76

It	has	to	do	with	which	sequence	is	held	constant	while	the	other	varies.	It’s
the	same	logic	that	applies	when	nesting	regular	for	loops:

>>>	#	Nested	one	way...

...	build_colors_toys	=	[]

>>>	for	color	in	colors:

...					for	toy	in	toys:

...									build_colors_toys.append(color	+	"	"	+	toy)

>>>	build_colors_toys[0]

'orange	bike'

>>>	build_colors_toys[1]

'orange	basketball'

>>>

>>>	#	And	nested	the	other	way.

...	build_toys_colors	=	[]

>>>	for	toy	in	toys:

...					for	color	in	colors:

...									build_toys_colors.append(color	+	"	"	+	toy)

>>>	build_toys_colors[0]

'orange	bike'

>>>	build_toys_colors[1]

'purple	bike'

The	 second	for	 clause	 in	 the	 list	 comprehension	 corresponds	 to	 the

innermost	for	loop.	Its	values	vary	through	their	range	more	rapidly	than	the

outer	one.

In	 addition	 to	 using	 many	for	 clauses,	 you	 can	 have	 more	 than	 one	if

clause,	for	multiple	levels	of	filtering.	Just	write	several	of	them	in	sequence:

77

>>>	numbers	=	[9,	-1,	-4,	20,	17,	-3]

>>>	odd_positives	=	[

...					num	for	num	in	numbers

...					if	num	>	0

...					if	num	%	2	==	1

...]

>>>	print(odd_positives)

[9,	17]

Here,	I’ve	placed	each	if	clause	on	its	own	line,	for	readability	-	but	I	could

have	 put	 both	 on	 one	 line.	When	 you	 have	more	 than	 one	if	 clause,	 each

element	must	meet	the	criteria	of	all	of	them	to	make	it	into	the	final	list.	In
other	words,	if	clauses	are	"and-ed"	together,	not	"or-ed"	together.

What	if	you	want	to	do	"or"	-	to	include	elements	matching	at	least	one	of	the
if	 clause	 criteria,	 omitting	 only	 those	 not	 matching	 either?	 List

comprehensions	don’t	allow	you	do	to	that	directly.	The	comprehension	mini-
language	 is	not	as	expressive	as	Python	 itself,	 and	 there	are	 lists	you	might
need	to	construct	which	cannot	be	expressed	as	a	comprehension.

But	sometimes	you	can	cheat	a	bit	by	defining	helper	functions.	For	example,
here’s	how	you	can	filter	based	on	whether	the	number	is	a	multiple	of	2	or	3:

>>>	numbers	=	[9,	-1,	-4,	20,	11,	-3]

>>>	def	is_mult_of_2_or_3(num):

...					return	(num	%	2	==	0)	or	(num	%	3	==	0)

...

>>>	[

78

...					num	for	num	in	numbers

...					if	is_mult_of_2_or_3(num)

...]

[9,	-4,	20,	-3]

We	discuss	this	more	in	the	"Limitations"	section,	later	in	the	chapter.

You	can	use	multiple	for	and	if	clauses	together:

>>>	weights	=	[0.2,	0.5,	0.9]

>>>	values	=	[27.5,	13.4]

>>>	offsets	=	[4.3,	7.1,	9.5]

>>>

>>>	[(weight,	value,	offset)

...			for	weight	in	weights

...			for	value	in	values

...			for	offset	in	offsets

...			if	offset	>	5.0

...			if	weight	*	value	<	offset]

[(0.2,	27.5,	7.1),	(0.2,	27.5,	9.5),	(0.2,	13.4,	7.1),

(0.2,	13.4,	9.5),	(0.5,	13.4,	7.1),	(0.5,	13.4,	9.5)]

The	 only	 rule	 is	 that	 the	 first	for	 clause	 must	 come	 before	 the	 first	if

clause.	Other	than	that,	you	can	interleave	for	and	if	clauses	in	any	order,

though	most	people	seem	to	find	it	more	readable	to	group	all	the	for	clauses

together	at	first,	then	the	if	clauses	together	at	the	end.

Comprehensions	and	Generators

79

List	comprehensions	create	lists:

>>>	squares	=	[n*n	for	n	in	range(6)]

>>>	type(squares)

<class	'list'>

When	you	need	a	 list,	 that’s	great,	but	sometimes	you	don’t	need	a	list,	and
you’d	prefer	something	more	scalable.	It’s	like	the	situation	near	the	start	of
the	generators	chapter:

#	This	again.

NUM_SQUARES	=	10*1000*1000

many_squares	=	[n*n	for	n	in	range(NUM_SQUARES)]

for	number	in	many_squares:

				do_something_with(number)

The	 entire	many_squares	 list	 must	 be	 fully	 created	 -	 all	 memory	 for	 it

must	 be	 allocated,	 and	 every	 element	 calculated	 -	 before
do_something_with	 is	 called	 even	once.	 And	 memory	 usage	 goes

through	the	roof.

You	know	one	solution:	write	a	generator	function,	and	call	it.	But	there’s	an
easier	option:	write	a	generator	expression.	This	is	the	official	name	for	it,	but
it	really	should	be	called	a	"generator	comprehension".	Syntactically,	it	looks
just	like	a	list	comprehension	-	except	you	use	parentheses	instead	of	square
brackets:

80

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

>>>	generated_squares	=	(n*n	for	n	in	range(NUM_SQUARES)	

)

>>>	type(generated_squares)

<class	'generator'>

This	"generator	expression"	creates	a	generator	object,	in	the	exact	same	way
a	list	comprehension	creates	a	list.	Any	list	comprehension	you	can	write,	you
can	use	 to	 create	 an	 equivalent	 generator	 object,	 just	 by	 swapping	"("	and

")"	for	"["	and	"]".

And	you’re	creating	the	object	directly,	without	having	to	define	a	generator
function	 to	 call.	 In	 other	 words,	 a	 generator	 expression	 is	 a	 convenient
shortcut	when	you	need	a	quick	generator	object:

#	This...

many_squares	=	(n*n	for	n	in	range(NUM_SQUARES))

#	...	is	EXACTLY	EQUIVALENT	to	this:

def	gen_many_squares(limit):

				for	n	in	range(limit):

								yield	n	*	n

many_squares	=	gen_many_squares(NUM_SQUARES)

As	far	as	Python	is	concerned,	there	is	no	difference.

Everything	 you	 know	 about	 list	 comprehensions	 applies	 to	 generator
expressions:	multiple	for	clauses,	if	clauses,	etc.	You	only	need	to	type	the

parentheses.

81

In	 fact,	 sometimes	 you	 can	 even	 omit	 them.	 When	 passing	 a	 generator
expression	 as	 an	 argument	 to	 a	 function,	 you	will	 sometimes	 find	 yourself
typing	"(("	 followed	 by	"))".	 In	 that	 situation,	Python	 lets	you	omit	 the

inner	 pair.	 Imagine,	 for	 example,	 you	 are	 sorting	 a	 list	 of	 customer	 email
addresses,	looking	at	only	those	customers	whose	status	is	"active":

>>>	#	User	is	a	class	with	"email"	and	"is_active"	fields.

...	#	all_users	is	a	list	of	User	objects.

>>>	#	Sorted	list	of	active	user's	email	addresses.

...	#	Passing	in	a	generator	expression.

>>>	sorted((user.email	for	user	in	all_users

...										if	user.is_active))

['fred@a.com',	'sandy@f.net',	'tim@d.com']

>>>

>>>	#	Omitting	the	inner	parentheses.

...	#	Still	passing	in	a	generator	expression!

>>>	sorted(user.email	for	user	in	all_users

...								if	user.is_active)

['fred@a.com',	'sandy@f.net',	'tim@d.com']

Notice	how	readable	and	natural	 this	 is	 (or	will	be,	once	you’ve	practiced	a
bit).	One	 thing	 to	watch	out	 for:	you	can	only	 inline	a	generator	expression
this	way	when	passed	 to	a	 function	or	method	of	one	argument.	Otherwise,
you	get	a	syntax	error:

>>>

>>>	#	Reverse	that	list.	Whoops...

...	sorted(user.email	for	user	in	all_users

82

...									if	user.is_active,	reverse=True)

		File	"<stdin>",	line	2

SyntaxError:	Generator	expression	must	be	parenthesized	if	

not	sole	argument

Python	can’t	unambiguously	interpret	what	you	mean	here,	so	you	must	use
the	inner	parentheses:

>>>	#	Okay,	THIS	will	get	the	reversed	list.

...	sorted((user.email	for	user	in	all_users

...									if	user.is_active),	reverse=True)

['tim@d.com',	'sandy@f.net',	'fred@a.com']

And	 of	 course,	 sometimes	 it’s	 more	 readable	 to	 assign	 the	 generator
expression	to	a	variable:

>>>	active_emails	=	(

...								user.email	for	user	in	all_users

...								if	user.is_active

...)

>>>	sorted(active_emails,	reverse=True)

['tim@d.com',	'sandy@f.net',	'fred@a.com']

Generator	expressions	without	parentheses	suggest	a	unified	way	of	thinking
about	 comprehensions,	 which	 link	 generator	 expressions	 and	 list
comprehensions	 together.	 Here’s	 a	 generator	 expression	 for	 a	 sequence	 of
squares:

83

(n**2	for	n	in	range(10))

And	here	it	is	again,	passed	to	the	built-in	list()	function:

list(n**2	for	n	in	range(10))

And	here	it	is	as	a	list	comprehension:

[n**2	for	n	in	range(10)]

When	 you	 understand	 generator	 expressions,	 it’s	 easy	 to	 see	 list
comprehensions	 as	 a	 derivative	 data	 structure.	 And	 the	 same	 applies	 for
dictionary	and	set	comprehensions	(covered	next).	With	this	insight,	you	start
seeing	new	opportunities	to	use	all	of	them	in	your	own	code,	improving	its
readability,	maintainability,	and	performance	in	the	process.

Generator	Expression	or	List	Comprehension?

If	 generator	 expressions	 are	 so	 great,	 why	 would	 you	 use	 list
comprehensions?	Generally	speaking,	when	deciding	which	to	use,	your	code
will	 be	 more	 scalable	 and	 responsive	 if	 you	 use	 a	 generator	 expression.
Except,	 of	 course,	 when	 you	 actually	 need	 a	 list.	 There	 are	 several
considerations.

First,	 if	 the	 sequence	 is	 unlikely	 to	 be	 very	 big	 -	 and	 by	 big,	 I	 mean	 a
minimum	of	 thousands	of	elements	 long	 -	you	probably	won’t	benefit	 from

84

chali
Highlight

chali
Highlight

using	 a	 generator	 expression.	 That’s	 just	 not	 big	 enough	 for	 scalability	 to

matter.	They’re	also	immutable.	If	you	need	random	access,	or	to	go	through
the	 sequence	 twice,	 or	 you	 might	 need	 to	 append	 or	 remove	 elements,
generator	expressions	won’t	work.

This	is	especially	important	when	writing	methods	or	functions	whose	return
value	 is	 a	 sequence.	 Do	 you	 return	 a	 generator	 expression,	 or	 a	 list
comprehension?	In	theory,	there’s	no	reason	to	ever	return	a	list	instead	of	a
generator	 object;	 a	 list	 can	be	 trivially	 created	by	passing	 it	 to	list().	 In

practice,	 the	 interface	may	be	such	 that	 the	caller	will	 really	want	an	actual
list.	Also,	if	you	are	constructing	the	return	value	as	a	list	within	the	function,
it’s	silly	to	return	a	generator	expression	over	it	-	just	return	the	actual	list.

And	if	your	intention	is	to	create	a	library	usable	by	people	who	may	not	be
advanced	Pythonistas,	that	can	be	an	argument	for	returning	lists.	Almost	all
programmers	are	familiar	with	list-like	data	structures.	But	fewer	are	familiar
with	 how	 generators	 work	 in	 Python,	 and	 may	 -	 quite	 reasonably	 -	 get
confused	when	confronted	with	a	generator	object.

Dictionaries,	Sets,	and	Tuples
Just	 like	 a	 list	 comprehension	 creates	 a	 list,	 a	 dictionary	 comprehension
creates	 a	 dictionary.	You	 saw	 an	 example	 at	 the	 beginning	 of	 this	 chapter;
here’s	another.	Suppose	you	have	this	Student	class:

85

chali
Highlight

chali
Highlight

chali
Highlight

chali
Highlight

class	Student:

				def	__init__(self,	name,	gpa,	major):

								self.name	=	name

								self.gpa	=	gpa

								self.major	=	major

Given	 a	 list	students	 of	 student	 objects,	 we	 can	 write	 a	 dictionary

comprehension	mapping	student	names	to	their	GPAs:

>>>	{	student.name:	student.gpa	for	student	in	students	}

{'Jim	Smith':	3.6,	'Ryan	Spencer':	3.1,

	'Penny	Gilmore':	3.9,	'Alisha	Jones':	2.5,

	'Todd	Reynolds':	3.4}

The	syntax	differs	 from	that	of	 list	comprehensions	 in	 two	ways.	 Instead	of
square	brackets,	you’re	using	curly	brackets	-	which	makes	sense,	since	this
creates	 a	 dictionary.	 The	 other	 difference	 is	 the	 expression	 field,	 whose
format	 is	"key:	 value",	 since	 a	dict	 has	 key-value	 pairs.	 So	 the

structure	is

{	KEY	:	VALUE	for	VARIABLE	in	SEQUENCE	}

These	 are	 the	 only	 differences.	Everything	 else	 you	 learned	 about	 list
comprehensions	applies,	including	filtering	with	if	clauses:

>>>	def	invert_name(name):

...					first,	last	=	name.split("	",	1)

...					return	last	+	",	"	+	first

86

chali
Highlight

chali
Highlight

...

>>>	#	Get	"lastname,	firstname"	of	high-GPA	students.

...	{	invert_name(student.name):	student.gpa

...			for	student	in	students

...			if	student.gpa	>	3.5	}

{'Smith,	Jim':	3.6,	'Gilmore,	Penny':	3.9}

You	 can	 create	 sets	 too.	 Set	 comprehensions	 look	 exactly	 like	 a	 list
comprehension,	but	with	curly	braces	instead	of	square	brackets:

>>>	#	A	list	of	student	majors...

...	[student.major	for	student	in	students]

['Computer	Science',	'Economics',	'Computer	Science',

	'Economics',	'Basket	Weaving']

>>>	#	And	the	same	as	a	set:

...	{	student.major	for	student	in	students	}

{'Economics',	'Computer	Science',	'Basket	Weaving'}

>>>	#	You	can	also	use	the	set()	built-in.

...	set(student.major	for	student	in	students)

{'Economics',	'Computer	Science',	'Basket	Weaving'}

(How	 does	 Python	 distinguish	 between	 a	 set	 and	 dict	 comprehension?
Because	the	dict	's	expression	is	a	key-value	pair,	while	a	set	's	has	a	single
value.)

What	 about	 tuple	 comprehensions?	 This	 is	 fun:	 strictly	 speaking,	 Python
doesn’t	support	them.	However,	you	can	pretend	it	does	by	using	tuple():

87

chali
Highlight

chali
Highlight

>>>	tuple(student.gpa	for	student	in	students

...							if	student.major	==	"Computer	Science")

(3.6,	2.5)

This	 creates	 a	 tuple,	but	 it’s	 not	 a	 tuple	 comprehension.	You’re	 calling	 the
tuple	constructor,	and	passing	it	a	single	argument.	What’s	that	argument?

A	generator	expression!	In	other	words,	you’re	doing	this:

>>>	cs_students	=	(

...					student.gpa	for	student	in	students

...					if	student.major	==	"Computer	Science"

...)

>>>	type(cs_students)

<class	'generator'>

>>>	tuple(cs_students)

(3.6,	2.5)

>>>

>>>	#	Same	as:

...	tuple((student.gpa	for	student	in	students

...								if	student.major	==	"Computer	Science"))

(3.6,	2.5)

>>>	#	But	you	can	omit	the	inner	parentheses.

tuple	's	constructor	takes	an	iterator	as	an	argument.	The	cs_students	is
a	 generator	 object	 (created	 by	 the	 generator	 expression),	 and	 a	 generator
object	 is	 an	 iterator.	 So	 you	 can	pretend	 like	 Python	 has	 tuple
comprehensions,	 using	"tuple("	 as	 the	 opener	 and	")"	 as	 the	 close.	 In

88

chali
Highlight

fact,	 this	 also	 gives	 you	 alternate	 ways	 to	 create	 dictionary	 and	 set
comprehensions:

>>>	#	Same	as:

...	#	{	student.name:	student.gpa	for	student	in	students	

}

>>>	dict((student.name,	student.gpa)

...						for	student	in	students)

{'Jim	Smith':	3.6,	'Penny	Gilmore':	3.9,

	'Alisha	Jones':	2.5,	'Ryan	Spencer':	3.1,

	'Todd	Reynolds':	3.4}

>>>	#	Same	as:

...	#	{	student.major	for	student	in	students	}

>>>	set(student.major	for	student	in	students)

{'Computer	Science',	'Basket	Weaving',	'Economics'}

Remember,	when	 you	 pass	 a	 generator	 expression	 into	 a	 function,	 you	 can
omit	the	inner	parentheses.	That’s	why	you	can,	for	example,	type

tuple(f(x)	for	x	in	numbers)

instead	of

tuple((f(x)	for	x	in	numbers))

One	 last	 point.	 Generator	 expressions	 are	 a	 scalable	 analogue	 of	 list
comprehensions;	 is	 there	 any	 such	 equivalent	 for	 dicts	 or	 sets?	No,	 it	 turns

89

out.	 If	you	need	 to	 lazily	generate	key-value	pairs	or	unique	elements,	your
best	bet	is	to	write	a	generator	function.

Limits	of	Comprehensions
Comprehensions	have	 a	 few	wrinkles	people	 sometimes	 trip	over.	Consider
the	following	code:

#	Read	in	the	lines	of	a	file,	stripping	leading	and

#	trailing	whitespace,	skipping	any	empty	or

#	whitespace-only	lines.

trimmed_lines	=	[]

for	line	in	open('wombat-story.txt'):

				line	=	line.strip()

				if	line	!=	"":

								trimmed_lines.append(line)

print("Got	{}	lines".format(len(trimmed_lines)))

Straightforward	 enough	 -	 we’re	 building	 a	 list	 named	trimmed_lines.

The	 resulting	 list	 has	 all	 leading	 and	 trailing	 whitespace	 removed	 from	 its
elements,	 skipping	 any	 empty	 lines	 (or	 lines	 that	 were	 just	 whitespace	 to
begin	with).	 It’s	not	hard	 to	 imagine	needing	 to	do	 something	 like	 this	 in	a
real	program.

Now…		how	would	you	do	this	using	a	list	comprehension?	Here’s	a	first	try:

90

with	open('wombat-story.txt')	as	story:

				trimmed_lines	=	[

								line.strip()

								for	line	in	story

								if	line.strip()	!=	""

]

print("Got	{}	lines".format(len(trimmed_lines)))

This	 works.	 Notice,	 though,	 that	line.strip()	 appears	 twice.	 That’s

wasting	 CPU	 cycles	 compared	 to	 the	 for-loop	 version,	 which	 only	 calls
line.strip()	 once.	 Stripping	 whitespace	 from	 a	 string	 isn’t	that

expensive,	computationally	speaking.	But	sooner	or	later,	you	will	want	to	do
something	where	this	matters:

>>>	values	=	[

...					expensive_function(n)

...					for	n	in	range(BIG_NUMBER)

...					if	expensive_function(n)	>	0

...]

So	 how	 can	 you	 create	 this	 as	 a	 list	 comprehension,	 while	 calling
expensive_function	only	once?	It	turns	out	there	is	no	direct	way	to	do

this.	There	some	perhaps-too-clever	solutions,	such	as	memoizing	(which	can
easily	overuse	memory),	nesting	a	generator	expression	inside	(probably	 the
best	choice),	or	making	an	intermediate	list	(if	it’s	small).

91

chali
Highlight

If	the	sequence	you	need	fits	the	pattern	above,	you	might	consider	building	it
the	 old-fashioned	way,	 using	 a	for	 loop	or	a	generator	 function.	Or	 if	you

still	want	 to	use	a	comprehension,	use	an	intermediate	generator	expression.
The	result	is	fairly	readable	and	understandable	(at	least	for	you,	having	read
this	far):

>>>	intermediate_values	=	(

...					expensive_function(n)

...					for	n	in	range(10000)

...)

>>>

>>>	values	=	[

...					intermediate_value

...					for	intermediate_value	in	intermediate_values

...					if	intermediate_value	>	0

...]

Another	limitation	is	that	comprehensions	must	be	built	on	one	element	at	a
time.	The	best	way	to	see	 this	 is	 to	 imagine	a	 list	composed	of	 inlined	key-
value	pairs	-	flattened,	in	other	words,	so	even-indexed	elements	are	keys,	and
each	key’s	value	comes	right	after	it.	Imagine	a	function	that	converts	this	to	a
dictionary:

>>>	#	Price	per	pound	of	fruits	&	vegetables,	in	dollars.

...	prices_flat_list	=	[

...					"orange",	0.70,	"banana",	0.86,

...					"cantaloupe",	0.63,	"bok	choy",	1.56,

...					"coconuts",	1.06]

92

>>>	list2dict(prices_flat_list)

{'banana':	0.86,	'bok	choy':	1.56,	'cantaloupe':	0.63,	

'orange':	0.7,	'coconuts':	1.06}

Here’s	one	way	to	implement	list2dict:

#	Converts	a	"flattened"	list	into	an	"unflattened"	dict.

def	list2dict(flattened):

				assert	len(flattened)	%	2	==	0,

								"Input	must	be	list	of	key-value	pairs"

				unflattened	=	dict()

				for	i	in	range(0,	len(flattened),	2):

								key,	value	=	flattened[i],	flattened[i+1]

								unflattened[key]	=	value

				return	unflattened

Look	 at	list2dict	's	 for	 loop.	 It	 runs	 through	 the	even	 index	numbers	of
elements	 in	flattened,	 rather	 than	 the	elements	of	flattened	directly.

This	allows	it	to	refer	to	two	different	list	elements	each	time	through	the	for
loop.	But	this	turns	out	to	be	something	which	just	can’t	be	expressed	in	the
semantics	of	a	Python	comprehension.	Generally,	a	comprehension	operates
by	 looking	at	each	element	 in	some	source	sequence,	one	at	a	 time;	 it	can’t
peek	at	neighboring	elements.

Another	 example:	 a	 function	 grouping	 the	 elements	 of	 a	 sequence	 by	 some
criteria	-	for	example,	the	first	letter	of	a	string:

93

>>>	names	=	["Joe",	"Jim",	"Todd",

...					"Tiffany",	"Zelma",	"Gerry",	"Gina"]

>>>	grouped_names	=	group_by_first_letter(names)

>>>	grouped_names['j']

['Joe',	'Jim']

>>>	grouped_names['z']

['Zelma']

Here’s	one	way	to	implement	the	grouping	function:

from	collections	import	defaultdict

def	group_by_first_letter(items):

				grouped	=	defaultdict(list)

				for	item	in	items:

								key	=	item[0].lower()

								grouped[key].append(item)

				return	grouped

Again,	 the	 semantics	 of	 Python	 comprehensions	 aren’t	 built	 to	 support	 this
kind	of	algorithm.	In	functional	programming	terms,	comprehensions	can	use
map	 and	 filter	 operations,	 but	 not	 reduce	 or	 fold.	 Fortunately,	 this	 covers
many	use	cases.	I	point	out	these	limitations	to	help	you	avoid	wasting	time
trying	 to	 figure	 them	 out;	 in	 spite	 of	 them,	 I	 find	 comprehensions	 to	 be	 a
valuable	part	of	my	daily	Python	toolbox,	and	I’m	sure	you	will	too. �

94

1	 Technically,	 the	 condition	 doesn’t	 have	 to	 depend	 on	 the	 variable,	 but	 it’s	 hard	 to	 imagine
building	a	useful	list	comprehension	this	way.

2	 I	 like	 to	 think	 future	 version	 control	 tools	will	 automatically	 resolve	 this	 kind	of	 situation.	 I
believe	it	will	require	the	tool	to	have	some	knowledge	of	the	language	syntax,	so	it	can	parse	and
reason	about	different	clauses	in	a	line	of	code.

3	Refresher:	The	range	built-in	returns	an	iterator	over	a	sequence	of	integers,	and	can	be	called

with	 1,	 2,	 or	 3	 arguments.	 The	 most	 general	 form	 is	range(start,	 stop,	 step),

beginning	at	start,	going	up	to	but	not	including	stop,	in	increments	of	step.	Called	with	2

arguments,	the	step-size	defaults	to	one;	with	one	argument,	that	argument	is	the	stop,	and	the

sequence	starts	at	zero.	In	Python	2,	use	xrange	instead	of	range.

95

ADVANCED	FUNCTIONS

In	 this	chapter,	we	go	beyond	the	basics	of	using	functions.	I’ll	assume	you
can	define	and	work	with	functions	taking	default	arguments:

>>>	def	foo(a,	b,	x=3,	y=2):

...					return	(a+b)/(x+y)

...

>>>	foo(5,	0)

1.0

>>>	foo(10,	2,	y=3)

2.0

>>>	foo(b=4,	x=8,	a=1)

0.5

Notice	 the	 last	 way	foo	 is	 called:	 with	 the	 arguments	 out	 of	 order,	 and

everything	 specified	 by	 key-value	 pairs.	 Not	 everyone	 knows	 that	 you	 can
call	any	function	in	Python	this	way.	So	long	as	the	value	of	each	argument	is
unambiguously	specified,	Python	doesn’t	care	how	you	call	the	function	(and
this	case,	we	specify	b,	x	 and	a	 out	of	order,	 letting	y	be	 its	default	value).

We’ll	leverage	this	flexibility	later.

96

chali
Highlight

This	 chapter’s	 topics	 are	 useful	 and	 valuable	 on	 their	 own.	 And	 they	 are
important	 building	 blocks	 for	 some	extremely	 powerful	 patterns,	which	you
learn	in	later	chapters.	Let’s	get	started!

Accepting	&	Passing	Variable	Arguments
The	foo	 function	 above	 can	 be	 called	 with	 either	 2,	 3,	 or	 4	 arguments.

Sometimes	 you	 want	 to	 define	 a	 function	 that	 can	 take	any	 number	 of
arguments	-	zero	or	more,	in	other	words.	In	Python,	it	looks	like	this:

#	Note	the	asterisk.	That's	the	magic	part

def	takes_any_args(*args):

				print("Type	of	args:	"	+	str(type(args)))

				print("Value	of	args:	"	+	str(args))

See	 carefully	 the	 syntax	 here.	takes_any_args	 is	 just	 like	 a	 regular

function,	except	you	put	an	asterisk	right	before	the	argument	args.	Within

the	function,	args	is	a	tuple:

>>>	takes_any_args("x",	"y",	"z")

Type	of	args:	<class	'tuple'>

Value	of	args:	('x',	'y',	'z')

>>>	takes_any_args(1)

Type	of	args:	<class	'tuple'>

Value	of	args:	(1,)

>>>	takes_any_args()

Type	of	args:	<class	'tuple'>

Value	of	args:	()

97

chali
Highlight

chali
Highlight

chali
Highlight

>>>	takes_any_args(5,	4,	3,	2,	1)

Type	of	args:	<class	'tuple'>

Value	of	args:	(5,	4,	3,	2,	1)

>>>	takes_any_args(["first",	"list"],	["another","list"])

Type	of	args:	<class	'tuple'>

Value	of	args:	(['first',	'list'],	['another',	'list'])

If	 you	 call	 the	 function	 with	 no	 arguments,	args	 is	 an	 empty	 tuple.

Otherwise,	it	is	a	tuple	composed	of	those	arguments	passed,	in	order.	This	is
different	 from	 declaring	 a	 function	 that	 takes	 a	 single	 argument,	 which
happens	to	be	of	type	list	or	tuple:

>>>	def	takes_a_list(items):

...					print("Type	of	items:	"	+	str(type(items)))

...					print("Value	of	items:	"	+	str(items))

...

>>>	takes_a_list(["x",	"y",	"z"])

Type	of	items:	<class	'list'>

Value	of	items:	['x',	'y',	'z']

>>>	takes_any_args(["x",	"y",	"z"])

Type	of	args:	<class	'tuple'>

Value	of	args:	(['x',	'y',	'z'],)

In	 these	 calls	 to	takes_a_list	 and	takes_any_args,	 the	 argument

items	 is	a	 list	of	strings.	We’re	calling	both	functions	the	exact	same	way,

but	what	happens	 in	each	 function	 is	different.	Within	takes_any_args,

the	 tuple	named	args	has	one	element	-	and	that	element	is	the	list	["x",

"y",	"z"].	But	in	takes_a_list,	items	is	the	list	itself.

98

This	*args	 idiom	gives	you	some	very	helpful	programming	patterns.	You

can	 work	 with	 arguments	 as	 an	 abstract	 sequence,	 while	 providing	 a
potentially	more	natural	interface	for	whomever	calls	the	function.

Above,	 I’ve	 always	 named	 the	 argument	args	 in	 the	 function	 signature.

Writing	*args	is	a	well-followed	convention,	but	you	can	choose	a	different

name	 -	 the	 asterisk	 is	what	makes	 it	 a	variable	 argument.	For	 instance,	 this
takes	paths	of	several	files	as	arguments:

def	read_files(*paths):

				data	=	""

				for	path	in	paths:

								with	open(path)	as	handle:

												data	+=	handle.read()

				return	data

Most	 Python	 programmers	 use	*args	 unless	 there	 is	 a	 reason	 to	 name	 it

something	else.[1]	That	reason	is	usually	readability;	read_files	is	a	good

example.	 If	 naming	 it	 something	 other	 than	args	 makes	 the	 code	 more

understandable,	do	it.

Argument	Unpacking

The	star	modifier	works	in	the	other	direction	too.	Intriguingly,	you	can	use	it
with	any	function.	For	example,	suppose	a	library	provides	this	function:

99

def	order_book(title,	author,	isbn):

				"""

				Place	an	order	for	a	book.

				"""

				print("Ordering	'{}'	by	{}	({})".format(

								title,	author,	isbn))

				#	...

Notice	 there’s	 no	 asterisk.	 Suppose	 in	 another,	 completely	 different	 library,
you	fetch	the	book	info	from	this	function:

def	get_required_textbook(class_id):

				"""

				Returns	a	tuple	(title,	author,	ISBN)

				"""

				#	...

Again,	 no	 asterisk.	Now,	one	way	you	 can	bridge	 these	 two	 functions	 is	 to
store	 the	 tuple	 result	 from	get_required_textbook,	 then	 unpack	 it

element	by	element:

>>>	book_info	=	get_required_textbook(4242)

>>>	order_book(book_info[0],	book_info[1],	book_info[2])

Ordering	'Writing	Great	Code'	by	Randall	Hyde	(1593270038)

Writing	code	this	way	is	tedious	and	error-prone;	not	ideal.

Fortunately,	Python	provides	a	better	way.	Let’s	look	at	a	different	function:

100

def	normal_function(a,	b,	c):

				print("a:	{}	b:	{}	c:	{}".format(a,b,c))

No	trick	here	-	it	really	is	a	normal,	boring	function,	taking	three	arguments.
If	we	have	those	three	arguments	as	a	list	or	tuple,	Python	can	automatically
"unpack"	them	for	us.	We	just	need	to	pass	in	that	collection,	prefixed	with	an
asterisk:

>>>	numbers	=	(7,	5,	3)

>>>	normal_function(*numbers)

a:	7	b:	5	c:	3

Again,	normal_function	 is	 just	 a	 regular	 function.	We	 did	 not	 use	 an

asterisk	 on	 the	def	 line.	 But	 when	 we	 call	 it,	 we	 take	 a	 tuple	 called

numbers,	 and	 pass	 it	 in	 with	 the	 asterisk	 in	 front.	 This	 is	 then	 unpacked

within	the	function	to	the	arguments	a,	b,	and	c.

There	 is	 a	 duality	 here.	We	 can	 use	 the	 asterisk	 syntax	 both	 in	defining	 a
function,	and	in	calling	a	function.	The	syntax	looks	very	similar.	But	realize
they	 are	 doing	 two	 different	 things.	One	 is	 packing	 arguments	 into	 a	 tuple
automatically	 -	 called	 "variable	 arguments";	 the	 other	 is	un-packing	 them	 -
called	"argument	unpacking".	Be	clear	on	the	distinction	between	the	two	in
your	mind.

Armed	 with	 this	 complete	 understanding,	 we	 can	 bridge	 the	 two	 book
functions	in	a	much	better	way:

101

>>>	book_info	=	get_required_textbook(4242)

>>>	order_book(*book_info)

Ordering	'Writing	Great	Code'	by	Randall	Hyde	(1593270038)

This	is	more	concise	(less	tedious	to	type),	and	more	maintainable.	As	you	get
used	to	the	concepts,	you’ll	find	it	increasingly	natural	and	easy	to	use	in	the
code	you	write.

Variable	Keyword	Arguments

So	far	we	have	just	looked	at	functions	with	positional	arguments	-	 the	kind
where	 you	 declare	 a	 function	 like	def	foo(a,	b):,	 and	 then	 invoke	 it

like	foo(7,	2).	You	know	that	a=7	and	b=2	within	the	function,	because

of	the	order	of	the	arguments.	Of	course,	Python	also	has	keyword	arguments:

>>>	def	get_rental_cars(size,	doors=4,

...									transmission='automatic'):

...					template	=	"Looking	for	a	{}-door	{}	car	with	{}	

transmission...."

...					print(template.format(doors,	size,	transmission))

...

>>>	get_rental_cars("economy",	transmission='manual')

Looking	for	a	4-door	economy	car	with	manual	

transmission....

And	 remember,	 Python	 lets	 you	 call	any	 function	 just	 using	 keyword
arguments:

102

>>>	def	bar(x,	y,	z):

...					return	x	+	y	*	z

...

>>>	bar(z=2,	y=3,	x=4)

10

These	 keyword	 arguments	won’t	 be	 captured	 by	 the	*args	 idiom.	Instead,

Python	provides	a	different	syntax	-	using	two	asterisks	instead	of	one:

def	print_kwargs(**kwargs):

				for	key,	value	in	kwargs.items():

								print("{}	->	{}".format(key,	value))

The	variable	kwargs	 is	a	dictionary.	 (In	contrast	 to	args	-	remember,	that

was	a	tuple.)	It’s	just	a	regular	dict,	so	we	can	iterate	through	its	key-value

pairs	with	.items():[2]

>>>	print_kwargs(hero="Homer",	antihero="Bart",

...					genius="Lisa")

hero	->	Homer

antihero	->	Bart

genius	->	Lisa

The	 arguments	 to	print_kwargs	 are	 key-value	 pairs.	 This	 is	 regular

Python	syntax	for	calling	functions;	what’s	interesting	is	happening	inside	the
function.	 There,	 a	 variable	 called	kwargs	 is	 defined.	 It’s	 a	 Python

103

dictionary,	consisting	of	the	key-value	pairs	passed	in	when	the	function	was
called.

Here’s	 another	 example,	which	 has	 a	 regular	 positional	 argument,	 followed
by	arbitrary	key-value	pairs:

def	set_config_defaults(config,	**kwargs):

				for	key,	value	in	kwargs.items():

								#	Do	not	overwrite	existing	values.

								if	key	not	in	config:

												config[key]	=	value

This	 is	 perfectly	 valid.	 You	 can	 define	 a	 function	 that	 takes	 some	 normal
arguments,	followed	by	zero	or	more	key-value	pairs:

>>>	config	=	{"verbosity":	3,	"theme":	"Blue	Steel"}

>>>	set_config_defaults(config,	bass=11,	verbosity=2)

>>>	config

{'verbosity':	3,	'theme':	'Blue	Steel',	'bass':	11}

Like	with	*args,	naming	this	variable	kwargs	is	just	a	strong	convention;

you	can	choose	a	different	name	if	that	improves	readability.

Keyword	Unpacking

Just	 like	 with	*args,	 double-star	works	 the	 other	way	 too.	We	 can	 take	 a

regular	function,	and	pass	it	a	dictionary	using	two	asterisks:

104

>>>	def	normal_function(a,	b,	c):

...					print("a:	{}	b:	{}	c:	{}".format(a,b,c))

...

>>>	numbers	=	{"a":	7,	"b":	5,	"c":	3}

>>>	normal_function(**numbers)

a:	7	b:	5	c:	3

Note	 the	 keys	 of	 the	 dictionary	must	 match	 up	with	 how	 the	 function	was
declared.	Otherwise	you	get	an	error:

>>>	bad_numbers	=	{"a":	7,	"b":	5,	"z":	3}

>>>	normal_function(**bad_numbers)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	normal_function()	got	an	unexpected	keyword	

argument	'z'

This	 is	 called	keyword	argument	 unpacking.	 It	works	 regardless	 of	whether
that	function	has	default	values	for	some	of	its	arguments	or	not.	So	long	as
the	value	of	each	argument	 is	 specified	one	way	or	another,	you	have	valid
code:

>>>	def	another_function(x,	y,	z=2):

...					print("x:	{}	y:	{}	z:	{}".format(x,y,z))

...

>>>	all_numbers	=	{"x":	2,	"y":	7,	"z":	10}

>>>	some_numbers	=	{"x":	2,	"y":	7}

>>>	missing_numbers	=	{"x":	2}

>>>	another_function(**all_numbers)

105

x:	2	y:	7	z:	10

>>>	another_function(**some_numbers)

x:	2	y:	7	z:	2

>>>	another_function(**missing_numbers)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	another_function()	missing	1	required	

positional	argument:	'y'

Combining	Positional	and	Keyword	Arguments

You	can	combine	the	syntax	to	use	both	positional	and	keyword	arguments.
In	a	function	signature,	just	separate	*args	and	**kwargs	by	a	comma:

>>>	def	general_function(*args,	**kwargs):

...					for	arg	in	args:

...									print(arg)

...					for	key,	value	in	kwargs.items():

...									print("{}	->	{}".format(key,	value))

...

>>>	general_function("foo",	"bar",	x=7,	y=33)

foo

bar

y	->	33

x	->	7

This	usage	-	declaring	a	function	like	def	general_function(*args,

**kwargs)	 -	 is	 the	 most	 general	 way	 to	 define	 a	 function	 in	 Python.	 A

function	so	declared	can	be	called	in	any	way,	with	any	valid	combination	of
keyword	and	non-keyword	arguments	-	including	no	arguments.

106

▪

▪

▪

▪

Similarly,	you	can	call	a	function	using	both	-	and	both	will	be	unpacked:

>>>	def	addup(a,	b,	c=1,	d=2,	e=3):

...					return	a	+	b	+	c	+	d	+	e

...

>>>	nums	=	(3,	4)

>>>	extras	=	{"d":	5,	"e":	2}

>>>	addup(*nums,	**extras)

15

There’s	one	 last	point	 to	understand,	on	argument	ordering.	When	you	def

the	function,	you	specify	the	arguments	in	this	order:

Named,	regular	(non-keyword)	arguments,	then

the	*args	non-keyword	variable	arguments,	then

the	**kwargs	keyword	variable	arguments,	and	finally

required	keyword-only	arguments.

You	can	omit	any	of	these	when	defining	a	function.	But	any	that	are	present
must	be	in	this	order.

#	All	these	are	valid	function	definitions.

def	combined1(a,	b,	*args):	pass

def	combined2(x,	y,	z,	**kwargs):	pass

def	combined3(*args,	**kwargs):	pass

def	combined4(x,	*args):	pass

def	combined5(u,	v,	w,	*args,	**kwargs):	pass

def	combined6(*args,	x,	y):	pass

107

Violating	this	order	will	cause	errors:

>>>	def	bad_combo(**kwargs,	*args):	pass

		File	"<stdin>",	line	1

				def	bad_combo(**kwargs,	*args):	pass

																										^

SyntaxError:	invalid	syntax

Sometimes	 you	 might	 want	 to	 define	 a	 function	 that	 takes	 0	 or	 more
positional	 arguments,	 and	 1	 or	more	required	 keyword	 arguments.	You	can
define	 a	 function	 like	 this	 with	*args	 followed	 by	 regular	 arguments,

forming	 a	 special	 category,	 called	keyword-only	 arguments.[3]	 If	 present,
whenever	 that	 function	 is	 called,	 all	must	 specified	as	key-value	pairs,	after
the	non-keyword	arguments:

>>>	def	read_data_from_files(*paths,	format):

...					"""Read	and	merge	data	from	several	files,

...					which	are	in	XML,	JSON,	or	YAML	format."""

...					#	...

...

>>>	housing_files	=	["houses.json",	"condos.json"]

>>>	housing_data	=	read_data_from_files(

...					*housing_files,	format="json")

>>>	commodities_data	=	read_data_from_files(

								"commodities.xml",	format="xml")

108

See	how	format	's	value	is	specified	with	a	key-value	pair.	If	you	try	passing
it	without	format=	in	front,	you	get	an	error:

>>>	commodities_data	=	read_data_from_files(

...					"commodities.xml",	"xml")

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	2,	in	<module>

TypeError:	read_data_from_files()	missing	1	required	

keyword-only	argument:	'format'

Functions	As	Objects
In	Python,	 functions	 are	 ordinary	 objects	 -	 just	 like	 an	 integer,	 a	 list,	 or	 an
instance	of	a	class	you	create.	The	implications	are	profound,	letting	you	do
certain	very	 useful	 things	 with	 functions.	 Leveraging	 this	 is	 one	 of	 those
secrets	separating	average	Python	developers	from	great	ones,	because	of	the
extremely	powerful	abstractions	which	follow.

Once	you	get	 this,	 it	 can	change	 the	way	you	write	 software	 forever.	 In
fact,	these	advanced	patterns	for	using	functions	in	Python	largely	transfer	to
other	languages	you	will	use	in	the	future.

To	explain,	let’s	start	by	laying	out	a	problematic	situation,	and	how	to	solve
it.	Imagine	you	have	a	list	of	strings	representing	numbers:

nums	=	["12",	"7",	"30",	"14",	"3"]

109

Suppose	we	want	to	find	the	biggest	integer	in	this	list.	The	max	builtin	does

not	help	us:

>>>	max(nums)

'7'

This	 isn’t	 a	 bug,	 of	 course;	 since	 the	 objects	 in	nums	 are	 strings,	max

compares	 each	 element	 lexicographically.[4]	 By	 that	 criteria,	 "7"	 is	 greater
than	 "30",	 for	 the	 same	 reason	 "g"	 comes	 after	 "ca"	 alphabetically.
Essentially,	max	is	evaluating	the	element	by	a	different	criteria	than	what	we

want.

Since	max	's	algorithm	is	simple,	let’s	roll	our	own	that	compares	based	on	the
integer	value	of	the	string:

>>>	def	max_by_int_value(items):

...					#	For	simplicity,	assume	len(items)	>	0

...					biggest	=	items[0]

...					for	item	in	items[1:]:

...									if	int(item)	>	int(biggest):

...													biggest	=	item

...					return	biggest

...

>>>	max_by_int_value(nums)

'30'

This	gives	us	what	we	want:	it	returns	the	element	in	the	original	list	which	is
maximal,	 as	 evaluated	 by	 our	 criteria.	Now	 imagine	working	with	 different

110

data,	where	you	have	different	criteria.	For	example,	a	list	of	actual	integers:

integers	=	[3,	-2,	7,	-1,	-20]

Suppose	we	want	 to	 find	 the	number	with	 the	greatest	absolute	value	 -	 i.e.,
distance	from	zero.	That	would	be	-20	here,	but	standard	max	won’t	do	that:

>>>	max(integers)

7

Again,	let’s	roll	our	own,	using	the	built-in	abs	function:

>>>	def	max_by_abs(items):

...					biggest	=	items[0]

...					for	item	in	items[1:]:

...									if	abs(item)	>	abs(biggest):

...													biggest	=	item

...					return	biggest

...

>>>	max_by_abs(integers)

-20

One	more	example	-	a	list	of	dictionary	objects:

student_joe	=	{'gpa':	3.7,	'major':	'physics',

															'name':	'Joe	Smith'}

student_jane	=	{'gpa':	3.8,	'major':	'chemistry',

																'name':	'Jane	Jones'}

111

student_zoe	=	{'gpa':	3.4,	'major':	'literature',

															'name':	'Zoe	Fox'}

students	=	[student_joe,	student_jane,	student_zoe]

Now,	what	if	we	want	the	record	of	the	student	with	the	highest	GPA?	Here’s
a	suitable	max	function:

>>>	def	max_by_gpa(items):

...					biggest	=	items[0]

...					for	item	in	items[1:]:

...									if	item["gpa"]	>	biggest["gpa"]:

...													biggest	=	item

...					return	biggest

...

>>>	max_by_gpa(students)

{'name':	'Jane	Jones',	'gpa':	3.8,	'major':	'chemistry'}

Just	 one	 line	 of	 code	 is	 different	 between	max_by_int_value,

max_by_abs,	 and	max_by_gpa:	 the	 comparison	 line.

max_by_int_value	 says	if	 int(item)	 >	 int(biggest);

max_by_abs	 says	if	 abs(item)	 >	 abs(biggest);	 and

max_by_gpa	 compares	item["gpa"]	 to	biggest["gpa"].	 Other

than	that,	these	max	functions	are	identical.

I	don’t	know	about	you,	but	having	nearly-identical	functions	like	this	drives
me	nuts.	The	way	out	is	to	realize	the	comparison	is	based	on	a	value	derived
from	 the	element	 -	not	 the	value	of	 the	element	 itself.	 In	other	words:	 each

112

cycle	 through	 the	 for	 loop,	 the	 two	 elements	 are	not	 themselves	 compared.
What	 is	 compared	 is	 some	 derived,	 calculated	 value:	int(item),	 or

abs(item),	or	item["gpa"].

It	 turns	out	we	can	abstract	out	 that	 calculation,	using	what	we’ll	 call	 a	key
function.	A	 key	 function	 is	 a	 function	 that	 takes	 exactly	 one	 argument	 -	 an
element	in	the	list.	It	returns	the	derived	value	used	in	the	comparison.	In	fact,
int	 works	 like	 a	 function,	 even	 though	 it’s	 technically	 a	 type,	 because

int("42")	 returns	42.[5]	So	types	and	other	callables	work,	as	long	as	we

can	invoke	it	like	a	one-argument	function.

This	lets	us	define	a	very	generic	max	function:

>>>	def	max_by_key(items,	key):

...					biggest	=	items[0]

...					for	item	in	items[1:]:

...									if	key(item)	>	key(biggest):

...													biggest	=	item

...					return	biggest

...

>>>	#	Old	way:

...	max_by_int_value(nums)

'30'

>>>	#	New	way:

...	max_by_key(nums,	int)

'30'

>>>	#	Old	way:

...	max_by_abs(integers)

-20

113

>>>	#	New	way:

...	max_by_key(integers,	abs)

-20

Pay	attention:	you	are	passing	the	function	object	itself	-	int	and	abs.	You

are	not	invoking	the	key	function	in	any	direct	way.	In	other	words,	you	write
int,	 not	int().	 This	 function	 object	 is	 then	 called	 as	 needed	 by

max_by_key,	to	calculate	the	derived	value:

								#	key	is	actually	int,	abs,	etc.

								if	key(item)	>	key(biggest):

For	sorting	the	students	by	GPA,	we	need	a	function	extracting	the	"gpa"	key
from	each	student	dictionary.	There	is	no	built-in	function	that	does	this,	but
we	can	define	our	own	and	pass	it	in:

>>>	#	Old	way:

...	max_by_gpa(students)

{'gpa':	3.8,	'name':	'Jane	Jones',	'major':	'chemistry'}

>>>	#	New	way:

...	def	get_gpa(who):

...					return	who["gpa"]

...

>>>	max_by_key(students,	get_gpa)

{'gpa':	3.8,	'name':	'Jane	Jones',	'major':	'chemistry'}

114

Again,	notice	get_gpa	is	a	function	object,	and	we	are	passing	that	function

itself	 to	max_by_key.	We	never	invoke	get_gpa	 directly;	max_by_key

does	that	automatically.

You	may	be	realizing	now	just	how	powerful	this	can	be.	In	Python,	functions
are	simply	objects	-	just	as	much	as	an	integer,	or	a	string,	or	an	instance	of	a
class	 is	 an	 object.	 You	 can	 store	 functions	 in	 variables;	 pass	 them	 as
arguments	 to	other	 functions;	and	even	return	 them	from	other	 function	and
method	calls.	This	all	provides	new	ways	for	you	to	encapsulate	and	control
the	behavior	of	your	code.

The	 Python	 standard	 library	 demonstrates	 some	 excellent	ways	 to	 use	 such
functional	patterns.	Let’s	look	at	a	key	(ha!)	example.

Key	Functions	in	Python
Earlier,	 we	 saw	 the	 built-in	max	 doesn’t	magically	 do	what	we	want	when

sorting	a	list	of	numbers-as-strings:

>>>	nums	=	["12",	"7",	"30",	"14",	"3"]

>>>	max(nums)

'7'

Again,	 this	 isn’t	 a	 bug	 -	max	 just	 compares	 elements	 according	 to	 the	 data

type,	 and	"7"	 >	 "12"	 evaluates	 to	True.	 But	 it	 turns	 out	max	 is

customizable.	You	can	pass	it	a	key	function!

115

>>>	max(nums,	key=int)

'30'

The	value	of	key	is	a	function	taking	one	argument	-	an	element	in	the	list	-

and	 returning	 a	 value	 for	 comparison.	 But	max	 isn’t	 the	 only	 built-in

accepting	a	key	function.	min	and	sorted	do	as	well:

>>>	#	Default	behavior...

...	min(nums)

'12'

>>>	sorted(nums)

['12',	'14',	'3',	'30',	'7']

>>>

>>>	#	And	with	a	key	function:

...	min(nums,	key=int)

'3'

>>>	sorted(nums,	key=int)

['3',	'7',	'12',	'14',	'30']

Many	 algorithms	 can	 be	 cleanly	 expressed	 using	min,	 max,	 or	sorted,

along	 with	 an	 appropriate	 key	 function.	 Sometimes	 a	 built-in	 (like	int	 or

abs)	will	 provide	what	 you	need,	 but	 often	you’ll	want	 to	 create	 a	 custom

function.	Since	this	is	so	commonly	needed,	the	operator	module	provides

some	helpers.	Let’s	revisit	the	example	of	a	list	of	student	records.

>>>	student_joe	=	{'gpa':	3.7,	'major':	'physics',

								'name':	'Joe	Smith'}

>>>	student_jane	=	{'gpa':	3.8,	'major':	'chemistry',

116

								'name':	'Jane	Jones'}

>>>	student_zoe	=	{'gpa':	3.4,	'major':	'literature',

								'name':	'Zoe	Fox'}

>>>	students	=	[student_joe,	student_jane,	student_zoe]

>>>

>>>	def	get_gpa(who):

...					return	who["gpa"]

...

>>>	sorted(students,	key=get_gpa)

[{'gpa':	3.4,	'major':	'literature',	'name':	'Zoe	Fox'},

	{'gpa':	3.7,	'major':	'physics',	'name':	'Joe	Smith'},

	{'gpa':	3.8,	'major':	'chemistry',	'name':	'Jane	Jones'}]

This	 is	 effective,	 and	 a	 fine	 way	 to	 solve	 the	 problem.	 Alternatively,	 the
operator	module’s	itemgetter	creates	and	returns	a	key	function	 that

looks	up	a	named	dictionary	field:

>>>	from	operator	import	itemgetter

>>>

>>>	#	Sort	by	GPA...

...	sorted(students,	key=itemgetter("gpa"))

[{'gpa':	3.4,	'major':	'literature',	'name':	'Zoe	Fox'},

	{'gpa':	3.7,	'major':	'physics',	'name':	'Joe	Smith'},

	{'gpa':	3.8,	'major':	'chemistry',	'name':	'Jane	Jones'}]

>>>

>>>	#	Now	sort	by	major:

...	sorted(students,	key=itemgetter("major"))

[{'gpa':	3.8,	'major':	'chemistry',	'name':	'Jane	Jones'},

	{'gpa':	3.4,	'major':	'literature',	'name':	'Zoe	Fox'},

	{'gpa':	3.7,	'major':	'physics',	'name':	'Joe	Smith'}]

117

Notice	itemgetter	is	a	function	that	creates	and	returns	a	function	-	itself

a	 good	 example	 of	 how	 to	work	with	 function	 objects.	 In	 other	words,	 the
following	two	key	functions	are	completely	equivalent:

#	What	we	did	above:

def	get_gpa(who):

				return	who["gpa"]

#	Using	itemgetter	instead:

from	operator	import	itemgetter

get_gpa	=	itemgetter("gpa")

This	 is	 how	 you	 use	itemgetter	 when	 the	 sequence	 elements	 are

dictionaries.	It	also	works	when	the	elements	are	 tuples	or	 lists	-	 just	pass	a
number	index	instead:

>>>	#	Same	data,	but	as	a	list	of	tuples.

...	student_rows	=	[

...						("Joe	Smith",	"physics",	3.7),

...						("Jane	Jones",	"chemistry",	3.8),

...						("Zoe	Fox",	"literature",	3.4),

...]

>>>

>>>	#	GPA	is	the	3rd	item	in	the	tuple,	i.e.	index	2.

...	#	Highest	GPA:

...	max(student_rows,	key=itemgetter(2))

('Jane	Jones',	'chemistry',	3.8)

>>>

>>>	#	Sort	by	major:

...	sorted(student_rows,	key=itemgetter(1))

118

[('Jane	Jones',	'chemistry',	3.8),

	('Zoe	Fox',	'literature',	3.4),

	('Joe	Smith',	'physics',	3.7)]

operator	 also	 provides	attrgetter,	 for	 keying	 off	 an	 attribute	 of	 the

element,	 and	methodcaller	 for	 keying	 off	 a	 method’s	 return	 value	 -

useful	when	the	sequence	elements	are	instances	of	your	own	class:

>>>	class	Student:

...					def	__init__(self,	name,	major,	gpa):

...									self.name	=	name

...									self.major	=	major

...									self.gpa	=	gpa

...					def	__repr__(self):

...									return	"{}:	{}".format(self.name,	self.gpa)

...

>>>	student_objs	=	[

...						Student("Joe	Smith",	"physics",	3.7),

...						Student("Jane	Jones",	"chemistry",	3.8),

...						Student("Zoe	Fox",	"literature",	3.4),

...]

>>>	from	operator	import	attrgetter

>>>	sorted(student_objs,	key=attrgetter("gpa"))

[Zoe	Fox:	3.4,	Joe	Smith:	3.7,	Jane	Jones:	3.8]

119

1	This	 seems	 to	be	deeply	 ingrained;	once	 I	 abbreviated	 it	*a,	only	 to	have	my	code	 reviewer

demand	I	change	it	to	*args.	They	wouldn’t	approve	it	until	I	changed	it,	so	I	did.

2	Or	.viewitems(),	if	you’re	using	Python	2.

3	These	are	newly	available	in	Python	3.	For	Python	2,	it’s	an	error	to	define	a	function	with	any
regular	arguments	after	*args.

4	Meaning,	alphabetically,	but	generalizing	beyond	the	letters	of	the	alphabet.

5	Python	uses	the	word	callable	to	describe	something	that	can	be	invoked	like	a	function.	This
can	 be	 an	 actual	 function,	 a	 type	 or	 class	 name,	 or	 an	 object	 defining	 the	__call__	 magic

method.	Key	functions	are	frequently	actual	functions,	but	can	be	any	callable.

120

DECORATORS

Python	supports	a	powerful	tool	called	the	decorator.	Decorators	let	you	add
rich	 features	 to	 groups	 of	 functions	 and	 classes,	without	modifying	 them	at
all;	untangle	distinct,	frustratingly	intertwined	concerns	in	your	code,	in	ways
not	otherwise	possible;	and	build	powerful,	extensible	software	frameworks.
Many	 of	 the	 most	 popular	 and	 important	 Python	 libraries	 in	 the	 world
leverage	decorators.	This	chapter	teaches	you	how	to	do	the	same.

A	decorator	is	something	you	apply	to	a	function	or	method.	You’ve	probably
seen	decorators	before.	There’s	a	decorator	called	property	often	used	 in

classes:

>>>	class	Person:

...					def	__init__(self,	first_name,	last_name):

...									self.first_name	=	first_name

...									self.last_name	=	last_name

...

...					@property

...					def	full_name(self):

...									return	self.first_name	+	"	"	+	self.last_name

...

121

>>>	person	=	Person("John",	"Smith")

>>>	print(person.full_name)

John	Smith

(Note	 what’s	 printed:	person.full_name,	 not

person.full_name().)	Another	example:	 in	 the	Flask	web	 framework,

here	is	how	you	define	a	simple	home	page:

@app.route("/")

def	hello():

				return	"<html><body>Hello	World!</body></html>"

The	app.route("/")	 is	 a	 decorator,	 applied	 here	 to	 the	 function	 called

hello.	So	an	HTTP	GET	request	 to	the	root	URL	("/")	will	be	handled	by

the	hello	function.

A	decorator	works	by	adding	behavior	around	a	function	-	meaning,	lines	of
code	which	are	executed	before	that	function	begins,	after	it	returns,	or	both.
It	does	not	alter	any	lines	of	code	inside	the	function.	Typically,	when	you	go
to	the	 trouble	 to	define	a	decorator,	you	plan	use	 it	on	at	 least	 two	different
functions,	 usually	more.	Otherwise	 you’d	 just	 put	 the	 extra	 code	 inside	 the
lone	function,	and	not	bother	writing	a	decorator.

Using	decorators	is	simple	and	easy;	even	someone	new	to	programming	can
learn	that	quickly.	Our	objective	is	different:	 to	give	you	the	ability	 to	write
your	own	decorators,	 in	many	different	useful	 forms.	This	 is	not	a	beginner

122

topic;	 it	barely	qualifies	as	 intermediate.	 It	 requires	a	deep	understanding	of
several	 sophisticated	 Python	 features,	 and	 how	 they	 play	 together.	 Most
Python	developers	never	learn	how	to	create	them.	In	this	chapter,	you	will.[1]

The	Basic	Decorator
Once	 a	 decorator	 is	 written,	 using	 it	 is	 easy.	 You	 just	 write	@	 and	 the

decorator	name,	on	the	line	before	you	define	a	function:

@some_decorator

def	some_function(arg):

				#	blah	blah

This	applies	the	decorator	called	some_decorator	 to	some_function.
[2]	Now,	it	turns	out	this	syntax	with	the	@	symbol	is	a	shorthand.	In	essence,
when	byte-compiling	your	code,	Python	will	translate	the	above	into	this:

def	some_function(arg):

				#	blah	blah

some_function	=	some_decorator(some_function)

This	is	valid	Python	code	too,	and	what	people	did	before	the	@	syntax	came

along.	The	key	here	is	the	last	line:

some_function	=	some_decorator(some_function)

123

▪

▪

▪

First,	understand	 that	a	decorator	is	just	a	function.	That’s	it.	It	happens	to
be	 a	 function	 taking	 one	 argument,	 which	 is	 the	 function	 object	 being
decorated.	It	then	returns	a	different	function.	In	the	code	snippet	above	is	you
defining	 a	 function,	 initially	 called	some_function.	That	 function	object

is	 passed	 to	some_decorator,	 which	 returns	 a	different	 function	 object,

which	is	finally	stored	in	some_function.

To	keep	us	sane,	let’s	define	some	terminology:

The	decorator	is	what	comes	after	the	@.	It’s	a	function.

The	bare	function	is	what’s	def	'ed	on	the	next	line.	It	is,	obviously,	also	a
function.

The	 end	 result	 is	 the	decorated	 function.	 It’s	 the	 final	 function	 you
actually	call	in	your	code.[3]

Your	mastery	of	decorators	will	be	most	graceful	if	you	remember	one	thing:
a	 decorator	 is	 just	 a	 normal,	 boring	 function.	 It	 happens	 to	 be	 a	 function
taking	exactly	one	argument,	which	is	itself	a	function.	And	when	called,	the
decorator	returns	a	different	function.

Let’s	make	this	concrete.	Here’s	a	simple	decorator	which	logs	a	message	to
stdout,	every	time	the	decorated	function	is	called.

124

def	printlog(func):

				def	wrapper(arg):

								print('CALLING:	{}'.format(func.__name__))

								return	func(arg)

				return	wrapper

@printlog

def	foo(x):

				print(x	+	2)

Notice	 this	 decorator	 creates	 a	 new	 function,	 called	wrapper,	 and	 returns

that.	 This	 is	 then	 assigned	 to	 the	 variable	foo,	 replacing	 the	 undecorated,

bare	function:

#	Remember,	this...

@printlog

def	foo(x):

				print(x	+	2)

#	...is	the	exact	same	as	this:

def	foo(x):

				print(x	+	2)

foo	=	printlog(foo)

Here’s	the	result:

>>>	foo(3)

CALLING:	foo

5

125

At	 a	 high	 level,	 the	 body	 of	printlog	 does	 two	 things:	define	a	 function

called	wrapper,	 then	 return	 it.	Many	decorators	will	 follow	 that	 structure.

Notice	printlog	does	not	modify	the	behavior	of	the	original	function	foo

itself;	all	wrapper	does	is	print	a	message	to	standard	out,	before	calling	the

original	(bare)	function.

Once	 you’ve	 applied	 a	 decorator,	 the	 bare	 function	 isn’t	 directly	 accessible
anymore;	you	can’t	call	it	in	your	code.	Its	name	now	applies	to	the	decorated
version.	But	that	decorated	function	internally	retains	a	reference	to	the	bare
function,	calling	it	inside	wrapper.

This	 version	 of	printlog	 has	 a	 big	 shortcoming,	 though.	 Look	 what

happens	when	I	apply	it	to	a	different	function:

>>>	@printlog

...	def	baz(x,	y):

...					return	x	**	y

...

>>>	baz(3,2)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	wrapper()	takes	1	positional	argument	but	2	

were	given

Can	you	spot	what	went	wrong?

126

printlog	is	built	to	wrap	a	function	taking	exactly	one	argument.	But	baz

has	two,	so	when	the	decorated	function	is	called,	the	whole	thing	blows	up.
There’s	no	reason	printlog	needs	to	have	this	restriction;	all	 it’s	doing	is

printing	 the	 function	name.	You	 fix	 it	 by	declaring	wrapper	with	variable

arguments:

#	A	MUCH	BETTER	printlog.

def	printlog(func):

				def	wrapper(*args,	**kwargs):

								print('CALLING:	{}'.format(func.__name__))

								return	func(*args,	**kwargs)

				return	wrapper

This	decorator	is	compatible	with	any	Python	function:

>>>	@printlog

...	def	foo(x):

...					print(x	+	2)

...

>>>	@printlog

...	def	baz(x,	y):

...					return	x	**	y

...

>>>	foo(7)

CALLING:	foo

9

>>>	baz(3,	2)

CALLING:	baz

9

127

A	decorator	written	this	way,	using	variable	arguments,	will	potentially	work
with	 functions	and	methods	written	years	 later	-	code	the	original	developer
never	imagined.	This	structure	has	proven	very	powerful	and	versatile.

#	The	prototypical	form	of	Python	decorators.

def	prototype_decorator(func):

				def	wrapper(*args,	**kwargs):

								return	func(*args,	**kwargs)

				return	wrapper

We	don’t	always	do	this,	though.	Sometimes	you	are	writing	a	decorator	that
only	applies	 to	a	 function	or	method	with	a	very	 specific	kind	of	 signature,
and	it	would	be	an	error	to	use	it	anywhere	else.	So	feel	free	to	break	this	rule
when	you	have	a	reason.

Decorators	apply	to	methods	just	as	well	as	to	functions.	And	you	often	don’t
need	 to	 change	 anything:	 when	 the	 wrapper	 has	 a	 signature	 of
wrapper(*args,	**kwargs),	 like	printlog	does,	it	works	just	fine

with	any	object’s	method.	But	sometimes	you	will	see	code	like	this:

#	Not	really	necessary.

def	printlog_for_method(func):

				def	wrapper(self,	*args,	**kwargs):

								print('CALLING:	{}'.format(func.__name__))

								return	func(self,	*args,	**kwargs)

				return	wrapper

This	 is	 a	 bit	 interesting.	 This	wrapper	 has	 one	 required	 argument,	 named

128

self.	And	it	works	fine	when	applied	to	a	method.	But	for	the	decorator	I’ve

written	 here,	 that	self	 is	 completely	 unnecessary,	 and	 in	 fact	 has	 a

downside.

Simply	 defining	wrapper(*args,	 **kwargs)	 causes	self	 to	 be

considered	 one	 of	 the	args;	 such	a	decorator	works	 just	 as	well	with	both

functions	 and	 methods.	But	 if	 a	 wrapper	 is	 defined	 to	 require	self,	 that

means	 it	 must	 always	 be	 called	 with	 at	 least	 one	 argument.	 Suddenly	 you
have	 a	 decorator	 that	 cannot	 be	 applied	 to	 functions	 without	 at	 least	 one
argument.	 (That	 it’s	named	self	doesn’t	matter;	it’s	just	a	temporary	name

for	 that	 first	 argument,	 inside	 the	 scope	 of	wrapper.)	 You	 can	 apply	 this

decorator	to	any	method,	and	to	some	functions.	But	if	you	apply	it	a	function
that	takes	no	arguments,	you’ll	get	a	run-time	error.

Now,	here’s	a	different	decorator:

#	This	is	more	sensible.

def	enhanced_printlog_for_method(func):

				def	wrapper(self,	*args,	**kwargs):

								print('CALLING:	{}	on	object	ID	{}'.format(

												func.__name__,	id(self)))

								return	func(self,	*args,	**kwargs)

				return	wrapper

It	could	be	applied	like	this:

129

class	Invoice:

				def	__init__(self,	id_number,	total):

								self.id_number	=	id_number

								self.total	=	total

								self.owed	=	total

				@enhanced_printlog_for_method

				def	record_payment(self,	amount):

								self.owed	-=	amount

inv	=	Invoice(42,	117.55)

print("ID	of	inv:	{}".format(id(inv)))

inv.record_payment(55.35)

Here’s	the	output	when	you	execute:

ID	of	inv:	4320786472

CALLING:	record_payment	on	object	ID	4320786472

This	 is	 a	 different	 story,	 because	 this	wrapper	's	 body	 explicitly	 uses	 the
current	object	-	a	concept	that	only	makes	sense	for	methods.	That	makes	the
self	 argument	 perfectly	 appropriate.	 It	 prevents	 you	 from	 using	 this

decorator	on	some	functions,	but	it	would	actually	be	an	error	to	apply	it	to	a
non-method	anyway.

When	writing	a	decorator	for	methods,	I	recommend	you	get	 in	 the	habit	of
making	 your	 wrapper	 only	 take	*args	 and	**kwargs,	 except	when	 you

have	 a	 clear	 reason	 to	 do	 differently.	After	 you’ve	written	 decorators	 for	 a
while,	 you’ll	 be	 surprised	at	how	often	you	end	up	using	old	decorators	on

130

new	 functions,	 in	 ways	 you	 never	 imagined	 at	 first.	 A	 signature	 of
wrapper(*args,	**kwargs)	preserves	that	flexibility.	If	the	decorator

turns	out	to	need	an	explicit	self	argument,	it’s	easy	enough	to	put	that	in.

Data	In	Decorators
Some	of	 the	most	valuable	decorator	patterns	 rely	on	using	variables	 inside
the	decorator	function	itself.	This	is	not	the	same	as	using	variables	inside	the
wrapper	function.	Let	me	explain.

Imagine	you	need	to	keep	a	running	average	of	what	some	function	returns.
And	further,	you	need	to	do	this	for	a	family	of	functions	or	methods.	We	can
write	 a	 decorator	 called	running_average	 to	 handle	 this	 -	 as	 you	 read,

note	carefully	how	data	is	defined	and	used:

def	running_average(func):

				data	=	{"total"	:	0,	"count"	:	0}

				def	wrapper(*args,	**kwargs):

								val	=	func(*args,	**kwargs)

								data["total"]	+=	val

								data["count"]	+=	1

								print("Average	of	{}	so	far:	{:.01f}".format(

													func.__name__,	data["total"]	/	

data["count"]))

								return	func(*args,	**kwargs)

				return	wrapper

131

▪

Each	time	the	function	is	called,	the	average	of	all	calls	so	far	is	printed	out.[4]

Decorator	 functions	 are	 called	 once	 for	 each	 function	 they	 are	 applied	 to.
Then,	each	time	that	function	is	called	in	the	code,	the	wrapper	function	is

what’s	actually	executed.	So	imagine	applying	it	to	a	function	like	this:

@running_average

def	foo(x):

				return	x	+	2

This	creates	an	internal	dictionary,	named	data,	used	to	keep	track	of	foo	's
metrics.	Running	foo	several	times	produces:

>>>	foo(1)

Average	of	foo	so	far:	3.00

3

>>>	foo(10)

Average	of	foo	so	far:	7.50

12

>>>	foo(1)

Average	of	foo	so	far:	6.00

3

>>>	foo(1)

Average	of	foo	so	far:	5.25

3

The	placement	of	data	is	important.	Pop	quiz:

What	happens	if	you	move	the	line	defining	data	up	one	line,	outside	the

132

▪

running_average	function?

What	happens	if	you	that	line	down,	into	the	wrapper	function?

Looking	at	the	code	above,	decide	on	your	answers	to	these	questions	before
reading	further.

Here’s	what	it	looks	like	if	you	create	data	outside	the	decorator:

#	This	version	has	a	bug.

data	=	{"total"	:	0,	"count"	:	0}

def	outside_data_running_average(func):

				def	wrapper(*args,	**kwargs):

								val	=	func(*args,	**kwargs)

								data["total"]	+=	val

								data["count"]	+=	1

								print("Average	of	{}	so	far:	{:.01f}".format(

													func.__name__,	data["total"]	/	

data["count"]))

								return	func(*args,	**kwargs)

				return	wrapper

If	 we	 do	 this,	every	 decorated	 function	 shares	 the	 exact	 same	data

dictionary!	 This	 actually	 doesn’t	 matter	 if	 you	 only	 ever	 decorate	 just	 one
function.	But	 you	 never	 bother	 to	write	 a	 decorator	 unless	 it’s	 going	 to	 be
applied	to	at	least	two:

133

@outside_data_running_average

def	foo(x):

				return	x	+	2

@outside_data_running_average

def	bar(x):

				return	3	*	x

And	that	produces	a	problem:

>>>	#	First	call	to	foo...

...	foo(1)

Average	of	foo	so	far:	3.0

3

>>>	#	First	call	to	bar...

...	bar(10)

Average	of	bar	so	far:	16.5

30

>>>	#	Second	foo	should	still	average	3.00!

...	foo(1)

Average	of	foo	so	far:	12.0

Because	outside_data_running_average	 uses	 the	same	 data

dictionary	for	all	the	functions	it	decorates,	the	statistics	are	conflated.

Now,	the	other	situation:	what	if	you	define	data	inside	wrapper?

#	This	version	has	a	DIFFERENT	bug.

def	running_average_data_in_wrapper(func):

				def	wrapper(*args,	**kwargs):

134

								data	=	{"total"	:	0,	"count"	:	0}

								val	=	func(*args,	**kwargs)

								data["total"]	+=	val

								data["count"]	+=	1

								print("Average	of	{}	so	far:	{:.01f}".format(

													func.__name__,	data["total"]	/	

data["count"]))

								return	func(*args,	**kwargs)

				return	wrapper

@running_average_data_in_wrapper

def	foo(x):

				return	x	+	2

Look	at	the	average	as	we	call	this	decorated	function	multiple	times:

>>>	foo(1)

Average	of	foo	so	far:	3.0

3

>>>	foo(5)

Average	of	foo	so	far:	7.0

7

>>>	foo(20)

Average	of	foo	so	far:	22.0

22

Do	you	see	why	the	running	average	is	wrong?	The	data	dictionary	is	reset

every	 time	 the	 decorated	 function	 is	 called.	 This	 is	 why	 it’s	 important	 to
consider	 the	 scope	 when	 implementing	 your	 decorator.	 Here’s	 the	 correct
version	again	(repeated	so	you	don’t	have	to	skip	back):

135

def	running_average(func):

				data	=	{"total"	:	0,	"count"	:	0}

				def	wrapper(*args,	**kwargs):

								val	=	func(*args,	**kwargs)

								data["total"]	+=	val

								data["count"]	+=	1

								print("Average	of	{}	so	far:	{:.01f}".format(

													func.__name__,	data["total"]	/	

data["count"]))

								return	func(*args,	**kwargs)

				return	wrapper

So	when	 exactly	 is	running_average	 executed?	The	decorator	 function

itself	is	executed	exactly	once	for	every	function	it	decorates.	If	you	decorate
N	functions,	running_average	is	executed	N	times,	so	we	get	N	different

data	dictionaries,	each	tied	to	one	of	the	resulting	decorated	functions.	This

has	nothing	to	do	with	how	many	times	a	decorated	function	is	executed.	The
decorated	function	is,	basically,	one	of	the	created	wrapper	functions.	That

wrapper	can	be	executed	many	times,	using	the	same	data	dictionary	that

was	in	scope	when	that	wrapper	was	defined.

This	is	why	running_average	produces	the	correct	behavior:

@running_average

def	foo(x):

				return	x	+	2

136

@running_average

def	bar(x):

				return	3	*	x

>>>	#	First	call	to	foo...

...	foo(1)

Average	of	foo	so	far:	3.0

3

>>>	#	First	call	to	bar...

...	bar(10)

Average	of	bar	so	far:	30.0

30

>>>	#	Second	foo	gives	correct	average	this	time!

...	foo(1)

Average	of	foo	so	far:	3.0

3

Now,	 what	 if	 you	 want	 to	 peek	 into	data?	 The	 way	 we’ve	 written

running_average,	 you	 can’t.	data	 persists	 because	 of	 the	 reference

inside	of	wrapper,	but	there	is	no	way	you	can	access	it	directly	in	normal

Python	code.	But	when	you	do	need	to	do	this,	there	is	a	very	easy	solution:
simply	assign	data	as	an	attribute	to	wrapper.	For	example:

#	collectstats	is	much	like	running_average,	but	lets

#	you	access	the	data	dictionary	directly,	instead

#	of	printing	it	out.

def	collectstats(func):

				data	=	{"total"	:	0,	"count"	:	0}

				def	wrapper(*args,	**kwargs):

								val	=	func(*args,	**kwargs)

137

								data["total"]	+=	val

								data["count"]	+=	1

								return	func(*args,	**kwargs)

				wrapper.data	=	data

				return	wrapper

See	that	line	wrapper.data	=	data?	Yes,	you	can	do	that.	A	function	in

Python	is	just	an	object,	and	in	Python,	you	can	add	new	attributes	to	objects
by	just	assigning	them.	This	conveniently	annotates	the	decorated	function:

@collectstats

def	foo(x):

				return	x	+	2

>>>	foo.data

{'total':	0,	'count':	0}

>>>	foo(1)

3

>>>	foo.data

{'total':	3,	'count':	1}

>>>	foo(2)

4

>>>	foo.data

{'total':	7,	'count':	2}

It’s	clear	now	why	collectstats	doesn’t	contain	any	print	statement:	you

don’t	need	one!	We	can	check	the	accumulated	numbers	at	any	time,	because
this	decorator	annotates	the	function	itself,	with	that	data	attribute.

138

Let’s	switch	to	a	another	problem	you	might	run	into,	and	how	you	deal	with
it.	Here’s	an	decorator	that	counts	how	many	times	a	function	has	been	called:

#	Watch	out,	this	has	a	bug...

count	=	0

def	countcalls(func):

				def	wrapper(*args,	**kwargs):

								global	count

								count	+=	1

								print('#	of	calls:	{}'.format(count))

								return	func(*args,	**kwargs)

				return	wrapper

@countcalls

def	foo(x):	return	x	+	2

@countcalls

def	bar(x):	return	3	*	x

This	version	of	countcalls	has	a	bug.	Do	you	see	it?

That’s	right:	it	stores	count	as	a	global	variable,	meaning	every	function	that

is	decorated	will	use	that	same	variable:

>>>	foo(1)

#	of	calls:	1

3

>>>	foo(2)

#	of	calls:	2

4

>>>	bar(3)

139

#	of	calls:	3

9

>>>	bar(4)

#	of	calls:	4

12

>>>	foo(5)

#	of	calls:	5

7

The	solution	is	trickier	than	it	seems.	Here’s	one	attempt:

#	Move	count	inside	countcalls,	and	remove	the

#	"global	count"	line.	But	it	still	has	a	bug...

def	countcalls(func):

				count	=	0

				def	wrapper(*args,	**kwargs):

								count	+=	1

								print('#	of	calls:	{}'.format(count))

								return	func(*args,	**kwargs)

				return	wrapper

But	that	just	creates	a	different	problem:

>>>	foo(1)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	6,	in	wrapper

UnboundLocalError:	local	variable	'count'	referenced	

before	assignment

140

We	can’t	use	global,	because	it’s	not	global.	But	in	Python	3,	we	can	use

the	nonlocal	keyword:

#	Final	working	version!

def	countcalls(func):

				count	=	0

				def	wrapper(*args,	**kwargs):

								nonlocal	count

								count	+=	1

								print('#	of	calls:	{}'.format(count))

								return	func(*args,	**kwargs)

				return	wrapper

This	finally	works	correctly:

>>>	foo(1)

#	of	calls:	1

3

>>>	foo(2)

#	of	calls:	2

4

>>>	bar(3)

#	of	calls:	1

9

>>>	bar(4)

#	of	calls:	2

12

>>>	foo(5)

#	of	calls:	3

141

Applying	nonlocal	 gives	 the	count	variable	a	special	scope	that	is	part-

way	between	local	and	global.	Essentially,	Python	will	search	for	the	nearest
enclosing	 scope	 that	 defines	 a	 variable	 named	count,	 and	use	 it	 like	 it’s	 a

global.[5]

You	may	be	wondering	why	we	didn’t	need	to	use	nonlocal	with	the	first

version	of	running_average	above	-	here	it	is	again,	for	reference:

def	running_average(func):

				data	=	{"total"	:	0,	"count"	:	0}

				def	wrapper(*args,	**kwargs):

								val	=	func(*args,	**kwargs)

								data["total"]	+=	val

								data["count"]	+=	1

								print("Average	of	{}	so	far:	{:.01f}".format(

													func.__name__,	data["total"]	/	

data["count"]))

								return	func(*args,	**kwargs)

				return	wrapper

When	we	have	a	line	like	count	+=	1,	that’s	actually	modifying	the	value

of	 the	count	variable	itself	-	because	it	really	means	count	=	count	+

1.	And	whenever	you	modify	(instead	of	just	read)	a	variable	that	was	created

in	 a	 larger	 scope,	 Python	 requires	 you	 to	 declare	 that’s	 what	 you	 actually
want,	with	global	or	nonlocal.

142

Here’s	 the	 sneaky	 thing:	when	we	write	data["count"]	+=	1,	 that	 is

not	 actually	 modifying	data!	 Or	 rather,	 it’s	 not	 modifying	 the	variable

named	data,	 which	 points	 to	 a	 dictionary	 object.	 Instead,	 the	 statement

data["count"]	+=	1	 invokes	a	method	 on	 the	data	object.	This	does

change	 the	 state	 of	 the	 dictionary,	 but	 it	 doesn’t	 make	data	 point	 to	 a

different	 dictionary.	 But	count	 +=1	 makes	count	 point	 to	 a	 different

integer,	so	we	need	to	use	nonlocal	there.

Data	in	Decorators	for	Python	2

The	nonlocal	keyword	didn’t	exist	before	version	3.0,	so	Python	2	has	no

way	to	say	"this	variable	is	partway	between	local	and	global".	But	you	have
several	workarounds.

My	favorite	technique	is	to	assign	the	variable	as	an	attribute	to	the	wrapper

function:

def	countcalls(func):

				def	wrapper(*args,	**kwargs):

								wrapper.count	+=	1

								print('#	of	calls:	{}'.format(wrapper.count))

								return	func(*args,	**kwargs)

				wrapper.count	=	0

				return	wrapper

Instead	 of	 a	 variable	 named	count,	 the	wrapper	 function	 object	 gets	 an

attribute	 named	count.	 So	 everywhere	 inside	wrapper,	 I	 reference	 the

143

variable	 as	wrapper.count.	 One	 interesting	 thing	 is	 that	 this

wrapper.count	 variable	 is	 initialized	after	 the	 function	 is	 defined,	 just

before	the	final	return	line	in	countcalls.	Python	has	no	problem	with

this;	 the	 attribute	doesn’t	 exist	when	wrapper	 is	defined,	but	 so	 long	as	 it

exists	when	 the	 decorated	 function	 is	called	 for	 the	 first	 time,	 no	 error	will
result.

This	is	my	favorite	solution,	and	what	I	use	in	my	own	Python	2	code.	It’s	not
commonly	used,	however,	so	I	will	explain	a	couple	of	other	techniques	you
may	see.	One	is	to	use	hasattr	to	check	whether	wrapper.count	exists

yet,	and	if	not,	initialize	it:

def	countcalls(func):

				def	wrapper(*args,	**kwargs):

								if	not	hasattr(wrapper,	'count'):

												wrapper.count	=	0

								wrapper.count	+=	1

								print('#	of	calls:	{}'.format(wrapper.count))

								return	func(*args,	**kwargs)

				return	wrapper

This	has	a	slight	performance	disadvantage,	because	hasattr	will	be	called

every	 time	 the	 decorated	 function	 is	 invoked,	while	 the	 first	 approach	 does
not.	It’s	unlikely	to	matter	unless	you’re	deeply	inside	some	nested	for-loop,
though.

144

Alternatively	-	and	this	one	has	no	performance	disadvantage	-	you	can	create
a	list	 object	 just	 outside	 of	wrapper	's	 scope,	 and	 treat	 its	 first	 element
like	the	variable	you	want	to	change:

def	countcalls(func):

				count_container	=	[0]

				def	wrapper(*args,	**kwargs):

								print('#	of	calls:	{}'.format(count_container[0]))

								count_container[0]	+=	1

								return	func(*args,	**kwargs)

				return	wrapper

@countcalls

def	foo(x):	return	x	+	2

@countcalls

def	bar(x):	return	3	*	x

Basically,	everywhere	the	Python	3	version	would	say	count,	your	code	will

s a y	count_container[0].	 This	 works	 without	 needing	global	 or

nonlocal,	 because	 the	count_container	contents	are	modified,	but	it

doesn’t	 modify	 what	 the	count_container	 variable	 points	 to.	 In	 other

words,	 it’s	 always	 the	 same	 list;	 you’re	 just	 changing	 the	 first	 (and	 only)
element	 in	 that	 list.	A	bit	 clunky,	but	probably	closest	 in	 spirit	 to	what	you
can	do	in	Python	3	with	nonlocal.

Decorators	That	Take	Arguments

145

Early	 in	 the	 chapter	 I	 showed	 you	 an	 example	 decorator	 from	 the	 Flask
framework:

@app.route("/")

def	hello():

				return	"<html><body>Hello	World!</body></html>"

This	 is	 different	 from	 any	 decorator	 we’ve	 implemented	 so	 far,	 because	 it
actually	takes	an	argument.	How	do	we	write	decorators	that	can	do	this?	For
example,	imagine	a	family	of	decorators	adding	a	number	to	the	return	value
of	a	function:

def	add2(func):

				def	wrapper(n):

								return	func(n)	+	2

				return	wrapper

def	add4(func):

				def	wrapper(n):

								return	func(n)	+	4

				return	wrapper

@add2

def	foo(x):

				return	x	**	2

@add4

def	bar(n):

				return	n	*	2

146

There	is	literally	only	one	character	difference	between	add2	and	add4;	it’s

very	 repetitive,	and	poorly	maintainable.	Wouldn’t	 it	be	better	 if	we	can	do
something	like	this:

@add(2)

def	foo(x):

				return	x	**	2

@add(4)

def	bar(n):

				return	n	*	2

We	can.	The	key	is	to	understand	that	add	is	actually	not	a	decorator;	it	is	a

function	 that	returns	 a	 decorator.	 In	 other	 words,	add	 is	 a	 function	 that

returns	another	function.	(Since	the	returned	decorator	is,	itself,	a	function).

To	make	this	work,	we	write	a	function	called	add,	which	creates	and	returns

the	decorator:

def	add(increment):

				def	decorator(func):

								def	wrapper(n):

												return	func(n)	+	increment

								return	wrapper

				return	decorator

It’s	easiest	to	understand	from	the	inside	out:

147

▪

▪

▪

The	wrapper	 function	 is	 just	 like	 in	 the	 other	 decorators.	 Ultimately,

when	 you	 call	foo	 (the	 original	 function	 name),	 it’s	 actually	 calling

wrapper.

Moving	 up,	 we	 have	 the	 aptly	 named	decorator.	 Hint:	 we	 could	 say

add2	=	add(2),	then	apply	add2	as	a	decorator.

At	the	top	level	is	add.	This	is	not	a	decorator.	It’s	a	function	that	returns	a

decorator.

Notice	 the	 closure	 here.	 The	increment	 variable	 is	 encapsulated	 in	 the

scope	of	the	add	function.	We	can’t	access	its	value	outside	the	decorator,	in

the	calling	context.	But	we	don’t	need	to,	because	wrapper	itself	has	access

to	it.

Suppose	 the	Python	 interpreter	 is	parsing	your	program,	and	encounters	 the
following	code:

@add(2)

def	f(n):

				#

Python	takes	everything	between	the	@-symbol	and	the	end-of-line	character
as	a	single	Python	expression	-	that	would	be	â€œadd(2)â€		in	this	case.	That
expression	 is	 evaluated.	 This	 all	 happens	at	 compile	 time.	 Evaluating	 the
decorator	expression	means	executing	add(2),	which	will	return	a	function

148

object.	That	function	object	 is	 the	decorator.	 It’s	named	decorator	 inside

the	 body	 of	 the	add	 function,	 but	 it	 doesn’t	 really	 have	 a	 name	 at	 the	 top

level;	it’s	just	applied	to	f.

What	can	help	you	see	more	clearly	is	to	think	of	functions	as	things	that	are
stored	in	variables.	In	other	words,	if	I	write	def	foo(x):,	 in	my	code,	I

could	say	to	myself	"I’m	creating	a	function	called	foo".	But	there	is	another
way	to	think	about	it.	I	can	say	"I’m	creating	a	function	object,	and	storing	it
in	a	variable	called	foo".	Believe	it	or	not,	this	is	actually	much	closer	to	how
Python	actually	works.	So	things	like	this	are	possible:

>>>	def	foo():

...					print("This	is	foo")

>>>	baz	=	foo

>>>	baz()

This	is	foo

>>>	#	foo	and	baz	have	the	same	id()...	so	they

...	#	refer	to	the	same	function	object.

>>>	id(foo)

4301663768

>>>	id(baz)

4301663768

Now,	back	to	add.	As	you	realize	add(2)	returns	a	function	object,	it’s	easy

to	 imagine	 storing	 that	 in	 a	 variable	 named	add2.	As	 a	matter	 of	 fact,	 the

following	are	all	exactly	equivalent:

149

#	This...

add2	=	add(2)

@add2

def	foo(x):

				return	x	**	2

#	...	has	the	same	effect	as	this:

@add(2)

def	foo(x):

				return	x	**	2

Remember	that	@	is	a	shorthand:

#	This...

@some_decorator

def	some_function(arg):

				#	blah	blah

#	...	is	translated	by	Python	into	this:

def	some_function(arg):

				#	blah	blah

some_function	=	some_decorator(some_function)

So	for	add,	the	following	are	all	equivalent:

add2	=	add(2)	#	Store	the	decorator	in	the	add2	variable

#	This	function	definition...

@add2

def	foo(x):

				return	x	**	2

150

#	...	is	translated	by	Python	into	this:

def	foo(x):

				return	x	**	2

foo	=	add2(foo)

#	But	also,	this...

@add(2)

def	foo(x):

				return	x	**	2

#	...	is	translated	by	Python	into	this:

def	foo(x):

				return	x	**	2

foo	=	add(2)(foo)

Look	over	 these	 four	 variations,	 and	 trace	 through	what’s	 going	on	 in	 your
mind,	 until	 you	 understand	 how	 they	 are	 all	 equivalent.	 The	 expression
add(2)(foo)	in	particular	is	interesting.	Python	parses	this	left-to-right.	So

it	first	executes	add(2),	which	returns	a	function	object.	In	this	expression,

that	function	has	no	name;	it’s	temporary	and	anonymous.	Python	takes	that
anonymous	function	object,	and	immediately	calls	it,	with	the	argument	foo.

(That	 argument	 is,	 of	 course,	 the	bare	 function	 -	 the	 function	which	we	are
decorating,	in	other	words.)	The	anonymous	function	then	returns	a	different
function	object,	which	we	finally	store	in	the	variable	called	foo.

Notice	 that	 in	 the	 line	foo	 =	 add(2)(foo),	 the	 name	foo	 means

something	different	each	 time	it’s	used.	Just	 like	when	you	write	something

151

like	n	=	n	+	3;	the	name	n	refers	to	something	different	on	either	side	of

the	equals	sign.	In	the	exact	same	way,	in	the	line	foo	=	add(2)(foo),

the	 variable	foo	 holds	 two	 different	 function	 objects	 on	 the	 left	 and	 right

sides.

Class-based	Decorators
I	lied	to	you.

I	 repeatedly	 told	 you	 a	 decorator	 is	 just	 a	 function.	 Well,	 decorators	 are
usually	implemented	 as	 functions,	 that’s	 true.	However,	 it’s	 also	possible	 to
implement	 a	 decorator	 using	 classes.	 In	 fact,	any	 decorator	 that	 you	 can
implement	as	a	function	can	be	done	with	a	class	instead.

Why	 would	 you	 do	 this?	 Basically,	 for	 certain	 kinds	 of	 more	 complex
decorators,	 classes	 are	 better	 suited,	 more	 readable,	 or	 otherwise	 easier	 to
work	with.	For	example,	 if	you	have	a	collection	of	 related	decorators,	you
can	leverage	inheritance	or	other	object-oriented	features.	Simpler	decorators
are	 better	 implemented	 as	 functions,	 though	 it	 depends	on	your	 preferences
for	 OO	 versus	 functional	 abstractions.	 It’s	 best	 to	 learn	 both	 ways,	 then
decide	which	you	prefer	in	your	own	code	on	a	case-by-case	basis.

The	secret	 to	decorating	with	classes	 is	 the	magic	method	__call__.	Any

object	 can	 implement	__call__	 to	make	 it	 callable	 -	meaning,	 the	 object

can	be	called	like	a	function.	Here’s	a	simple	example:

152

class	Prefixer:

				def	__init__(self,	prefix):

								self.prefix	=	prefix

				def	__call__(self,	message):

								return	self.prefix	+	message

You	can	then,	in	effect,	"instantiate"	functions:

>>>	simonsays	=	Prefixer("Simon	says:	")

>>>	simonsays("Get	up	and	dance!")

'Simon	says:	Get	up	and	dance!'

Just	 looking	 at	simonsays("Get	 up	 and	 dance!")	 in	 isolation,

you’d	never	guess	it	is	anything	other	than	a	normal	function.	In	fact,	it’s	an
instance	of	Prefixer.

You	 can	 use	__call__	 to	 implement	 decorators,	 in	 a	 very	 different	way.

Before	 proceeding,	 quiz	 yourself:	 thinking	 back	 to	 the	@printlog

decorator,	 and	 using	 this	 information	 about	__call__,	 how	 might	 you

implement	printlog	as	a	class	instead	of	a	function?

The	basic	approach	is	to	pass	func	it	to	the	constructor	of	a	decorator	class,

and	adapt	wrapper	to	be	the	__call__	method:

class	PrintLog:

				def	__init__(self,	func):

								self.func	=	func

153

				def	__call__(self,	*args,	**kwargs):

								print('CALLING:	{}'.format(self.func.__name__))

								return	self.func(*args,	**kwargs)

#	Compare	to	the	function	version	you	saw	earlier:

def	printlog(func):

				def	wrapper(*args,	**kwargs):

								print("CALLING:	"	+	func.__name__)

								return	func(*args,	**kwargs)

				return	wrapper

>>>	@PrintLog

...	def	foo(x):

...					print(x	+	2)

...

>>>	@PrintLog

...	def	baz(x,	y):

...					return	x	**	y

...

>>>	foo(7)

CALLING:	foo

9

>>>	baz(3,	2)

CALLING:	baz

9

From	 the	 point	 of	 view	 of	 the	 user,	@Printlog	 and	@printlog	 work

exactly	the	same.

Class-based	decorators	have	a	 few	advantages	over	 function-based.	For	one
thing,	the	decorator	is	a	class,	which	means	you	can	leverage	inheritance.	So

154

if	you	have	a	family	of	related	decorators,	you	can	reuse	code	between	them.
Here’s	an	example:

import	sys

class	ResultAnnouncer:

				stream	=	sys.stdout

				prefix	=	"RESULT"

				def	__init__(self,	func):

								self.func	=	func

				def	__call__(self,	*args,	**kwargs):

								value	=	self.func(*args,	**kwargs)

								self.stream.write('{}:	{}\n'.format(self.prefix,	

value))

								return	value

class	StdErrResultAnnouncer(ResultAnnouncer):

				stream	=	sys.stderr

				prefix	=	"ERROR"

Another	 benefit	 is	when	 you	 prefer	 to	 accumulate	 state	 in	 object	 attributes,
instead	 of	 a	 closure.	 For	 example,	 the	countcalls	 function	 decorator

above	could	be	implemented	as	a	class:

class	CountCalls:

				def	__init__(self,	func):

								self.func	=	func

								self.count	=	1

				def	__call__(self,	*args,	**kwargs):

								print('#	of	calls:	{}'.format(self.count))

								self.count	+=	1

								return	self.func(*args,	**kwargs)

155

@CountCalls

def	foo(x):

				return	x	+	2

Notice	 this	 also	 lets	 us	 access	foo.count,	 if	we	want	 to	 check	 the	 count

outside	of	the	decorated	function.	The	function	version	didn’t	let	us	do	this.

When	 creating	 decorators	 which	 take	 arguments,	 the	 structure	 is	 a	 little
different.	 In	 this	 case,	 the	 constructor	 accepts	 not	 the	func	 object	 to	 be

decorated,	but	the	parameters	on	the	decorator	line.	The	__call__	method

must	 take	 the	func	object,	define	a	wrapper	function,	and	return	it	-	similar

to	simple	function-based	decorators:

#	Class-based	version	of	the	"add"	decorator	above.

class	Add:

				def	__init__(self,	increment):

								self.increment	=	increment

				def	__call__(self,	func):

								def	wrapper(n):

												return	func(n)	+	self.increment

								return	wrapper

You	then	use	it	in	a	similar	manner	to	any	other	argument-taking	decorator:

>>>	@Add(2)

...	def	foo(x):

...					return	x	**	2

...

156

>>>	@Add(4)

...	def	bar(n):

...					return	n	*	2

...

>>>	foo(3)

11

>>>	bar(77)

158

Any	function-based	decorator	can	be	implemented	as	a	class-based	decorator;
you	simply	adapt	the	decorator	function	itself	to	__init__,	 and	wrapper

to	__call__.	It’s	possible	to	design	class-based	decorators	which	cannot	be

translated	into	a	function-based	form,	though.

For	complex	decorators,	some	people	feel	 that	class-based	are	easier	to	read
than	function-based.	In	particular,	many	people	seem	to	find	multiply	nested
def	's	hard	to	reason	about.	Others	(including	your	author)	feel	the	opposite.
This	is	a	matter	of	preference,	and	I	recommend	you	practice	with	both	styles
before	coming	to	your	own	conclusions.

Decorators	For	Classes
I	 lied	 to	 you	 again.	 I	 said	 decorators	 are	 applied	 to	 functions	 and	methods.
Well,	they	can	also	be	applied	to	classes.

(Understand	 this	 has	nothing	 to	 do	 with	 the	 last	 section’s	 topic,	 on
implementing	 decorators	 as	 classes.	 A	 decorator	 can	 be	 implemented	 as	 a

157

function,	or	as	a	class;	and	that	decorator	can	be	applied	to	a	function,	or	to	a
class.	They	are	independent	ideas;	here,	we	are	talking	about	how	to	decorate
classes	instead	of	functions.)

To	introduce	an	example,	let	me	explain	Python’s	built-in	repr()	function.

When	called	with	one	argument,	this	returns	a	string,	meant	to	represent	the
passed	 object.	 It’s	 similar	 to	str();	 the	 difference	 is	 that	 while	str()

returns	a	human-readable	string,	repr()	is	meant	to	return	a	string	version

of	the	Python	code	needed	to	recreate	it.	So	imagine	a	simple	Penny	class:

class	Penny:

				value	=	1

penny	=	Penny()

Ideally,	repr(penny)	 returns	 the	string	"Penny()".	But	that’s	not	what

happens	by	default:

>>>	class	Penny:

...					value	=	1

>>>	penny	=	Penny()

>>>	repr(penny)

'<__main__.Penny	object	at	0x10229ff60>'

You	 fix	 this	 by	 implementing	 a	__repr__	method	on	your	classes,	which

repr()	will	use:

158

>>>	class	Penny:

...					value	=	1

...					def	__repr__(self):

...									return	"Penny()"

>>>	penny	=	Penny()

>>>	repr(penny)

'Penny()'

You	can	create	a	decorator	that	will	automatically	add	a	__repr__	method

to	any	class.	You	might	be	able	to	guess	how	it	works.	Instead	of	a	wrapper
function,	the	decorator	returns	a	class:

>>>	def	autorepr(klass):

...					def	klass_repr(self):

...									return	'{}()'.format(klass.__name__)

...					klass.__repr__	=	klass_repr

...					return	klass

...

>>>	@autorepr

...	class	Penny:

...					value	=	1

...

>>>	penny	=	Penny()

>>>	repr(penny)

'Penny()'

It’s	suitable	for	classes	with	no-argument	constructors,	like	Penny.	Note	how

the	 decorator	 modifies	klass	 directly.	 The	 original	 class	 is	 returned;	 that

original	 class	 just	 now	 has	 a	__repr__	method.	Can	 you	 see	 how	 this	 is

159

different	 from	 what	 we	 did	 with	 decorators	 of	 functions?	 With	 those,	 the
decorator	returned	a	new,	different	function	object.

Another	 strategy	 for	 decorating	 classes	 is	 closer	 in	 spirit:	 creating	 a	 new
subclass	within	the	decorator,	returning	that	in	its	place:

def	autorepr_subclass(klass):

				class	NewClass(klass):

								def	__repr__(self):

												return	'{}()'.format(klass.__name__)

				return	NewClass

This	has	the	disadvantage	of	creating	a	new	type:

>>>	@autorepr_subclass

...	class	Nickel:

...					value	=	5

...

>>>	nickel	=	Nickel()

>>>	type(nickel)

<class	'__main__.autorepr_subclass.<locals>.NewClass'>

The	resulting	object’s	type	isn’t	obviously	related	to	the	decorated	class.	That
makes	 debugging	 harder,	 creates	 unclear	 log	 messages,	 and	 has	 other
unexpected	 effects.	For	 this	 reason,	 I	 recommend	 you	 prefer	 the	 first
approach.

160

Class	decorators	tend	to	be	less	useful	in	practice	than	those	for	functions	and
methods.	When	 they	 are	 used,	 it’s	 often	 to	 automatically	 generate	 and	 add
methods.	 But	 they	 are	 more	 flexible	 than	 that.	 You	 can	 even	 express	 the
singleton	pattern	using	class	decorators:

def	singleton(klass):

					instances	=	{}

					def	get_instance():

									if	klass	not	in	instances:

													instances[klass]	=	klass()

									return	instances[klass]

					return	get_instance

#	There	is	only	one	Elvis.

@singleton

class	Elvis:

				pass

Note	the	IDs	are	the	same:

>>>	elvis1	=	Elvis()

>>>	elvis2	=	Elvis()

>>>

>>>	id(elvis1)

4333747560

>>>	id(elvis2)

4333747560

Preserving	the	Wrapped	Function

161

▪

▪

▪

The	 techniques	 in	 this	 chapter	 for	 creating	 decorators	 are	 time-tested,	 and
valuable	 in	 many	 situations.	 But	 the	 resulting	 decorators	 have	 a	 few
problems:

Function	 objects	 automatically	 have	 certain	 attributes,	 like	__name__,

__doc__,	__module__,	 etc.	 The	wrapper	 clobbers	 all	 these,	 breaking

any	code	relying	on	them.

Decorators	 interfere	with	 introspection	 -	masking	 the	wrapped	 function’s
signature,	and	blocking	inspect.getsource().

Decorators	cannot	be	applied	 in	certain	more	exotic	situations	-	 like	class
methods,	or	descriptors	-	without	going	through	some	heroic	contortions.

The	 first	 problem	 is	 easily	 solved	using	 the	 standard	 library’s	functools

module.	It	includes	a	function	called	wraps,	which	you	use	like	this:

import	functools

def	printlog(func):

				@functools.wraps(func)

				def	wrapper(*args,	**kwargs):

								print('CALLING:	{}'.format(func.__name__))

								return	func(*args,	**kwargs)

				return	wrapper

That’s	 right	 -	functools.wraps	 is	 a	decorator,	 that	you	use	inside	your

own	decorator.	When	applied	to	the	wrapper	function,	it	essentially	copies

162

certain	attributes	from	the	wrapped	function	to	the	wrapper.	It	is	equivalent	to
this:

def	printlog(func):

				def	wrapper(*args,	**kwargs):

								print('CALLING:	{}'.format(func.__name__))

								return	func(*args,	**kwargs)

				wrapper.__name__	=	func.__name__

				wrapper.__doc__	=	func.__doc__

				wrapper.__module__	=	func.__module__

				wrapper.__annotations__	=	func.__annotations__

				return	wrapper

>>>	@printlog

...	def	foo(x):

...					"Double-increment	and	print	number."

...					print(x	+	2)

...

>>>	#	functools.wraps	transfers	the	wrapped	function's	

attributes

...	foo.__name__

'foo'

>>>	print(foo.__doc__)

Double-increment	and	print	number.

Contrast	this	with	the	default	behavior:

#	What	you	get	without	functools.wraps.

>>>	foo.__name__

'wrapper'

163

>>>	print(foo.__doc__)

None

In	 addition	 to	 saving	 you	 lots	 of	 tedious	 typing,	functools.wraps

encapsulates	 the	details	of	what	 to	copy	over,	so	you	don’t	need	to	worry	if
new	attributes	are	 introduced	in	future	versions	of	Python.	For	example,	 the
__annotations__	 attribute	 was	 added	 in	 Python	 3;	 those	 who	 used

functools.wraps	 in	 their	 Python	 2	 code	 had	 one	 less	 thing	 to	 worry

about	when	porting	to	Python	3.

functools.wraps	is	a	actually	a	convenient	shortcut	of	the	more	general

update_wrapper.	 Since	wraps	 only	 works	 with	 function-based

decorators,	 your	 class-based	 decorators	 must	 use	update_wrapper

instead:

import	functools

class	PrintLog:

				def	__init__(self,	func):

								self.func	=	func

								functools.update_wrapper(self,	func)

				def	__call__(self,	*args,	**kwargs):

								print('CALLING:	{}'.format(self.func.__name__))

								return	self.func(*args,	**kwargs)

While	 useful	 for	 copying	 over	__name__,	 __doc__,	 and	 the	 other

attributes,	wraps	 and	update_wrapper	 do	 not	 help	 with	 the	 other

problems	 mentioned	 above.	 The	 closest	 to	 a	 full	 solution	 is	 Graham

164

Dumpleton’s	wrapt	library.[6]	Decorators	created	using	 the	wrapt	module

work	in	situations	that	cause	normal	decorators	to	break,	and	behave	correctly
when	used	with	more	exotic	Python	language	features.

So	what	should	you	do	in	practice?

Common	 advice	 says	 to	 proactively	 use	functools.wraps	 in	 all	 your

decorators.	 I	 have	 a	 different,	 probably	 controversial	 opinion,	 born	 from
observing	that	most	Pythonistas	in	the	wild	do	not	regularly	use	it,	including
myself,	even	though	we	know	the	implications.

While	 it’s	 true	 that	 using	functools.wraps	 on	 all	 your	 decorators	will

prevent	certain	problems,	doing	so	is	not	completely	free.	There	is	a	cognitive
cost,	in	that	you	have	to	remember	to	use	it	-	at	least,	unless	you	make	it	an
ingrained,	 fully	 automatic	 habit.	 It’s	 boilerplate	 which	 takes	 extra	 time	 to
write,	and	which	references	the	func	parameter	-	so	there’s	something	else	to

modify	 if	 you	 change	 its	 name.	And	with	wrapt,	you	have	another	 library

dependency	to	manage.

All	these	amount	to	a	small	distraction	each	time	you	write	a	decorator.	And
when	 you	do	 have	 a	 problem	 that	functools.wraps	 or	 the	wrapt

module	would	solve,	you	are	likely	to	encounter	it	during	development,	rather
than	 have	 it	 show	 up	 unexpectedly	 in	 production.	 (Look	 at	 the	 list	 above
again,	and	this	will	be	evident.)	When	that	happens,	you	can	just	add	it	and
move	on.

165

The	 biggest	 exception	 is	 probably	 when	 you	 are	 using	 some	 kind	 of
automated	 API	 documentation	 tool,[7]	 which	 will	 use	 each	 function’s
__doc__	 attribute	 to	 generate	 reference	 docs.	 Since	 decorators

systematically	clobber	 that	attribute,	 it	makes	sense	to	document	a	policy	of
using	functools.wraps	for	all	decorators	in	your	coding	style	guidelines,

and	enforce	it	in	code	reviews.

Aside	from	situations	like	this,	though,	the	problems	with	decorators	will	be
largely	 theoretical	 for	 most	 (but	 not	 all)	 developers.	 If	 you	 are	 in	 that
category,	I	recommend	optimistically	writing	decorators	without	bothering	to
use	wraps,	update_wrapper,	 or	 the	wrapt	module.	 If	 and	when	 you

realize	 you	 are	 having	 a	 problem	 that	 these	 would	 solve	 for	 a	 specific
decorator,	introduce	them	then.[8] �

166

1	Writing	decorators	builds	on	the	"Advanced	Functions"	chapter.	If	you	are	not	already	familiar
with	that	material,	read	it	first.

2	 For	 Java	 people:	 this	 looks	 just	 like	 Java	 annotations.	 However,	 it’s	completely	 different.
Python	decorators	are	not	in	any	way	similar.

3	 Some	authors	 use	 the	phrase	 "decorated	 function"	 to	mean	 "the	 function	 that	 is	 decorated"	 -
what	I’m	calling	the	"bare	function".	If	you	read	a	lot	of	blog	posts,	you’ll	find	the	phrase	used
both	ways	(sometimes	in	the	same	article),	but	we’ll	consistently	use	the	definitions	above.

4	In	a	real	application,	you’d	write	the	average	to	some	kind	of	log	sink,	but	we’ll	use	print()

here	because	it’s	convenient	for	learning.

5	nonlocal	is	not	available	in	Python	2;	if	you	are	using	that	version,	see	the	next	section.

6	 pip	 install	 wrapt.	 See	 also	https://github.com/GrahamDumpleton/wrapt	 and

http://wrapt.readthedocs.org/	.

7	See	https://wiki.python.org/moin/DocumentationTools	for	a	thorough	list.

8	A	perfect	example	of	this	happens	towards	the	end	of	the	"Building	a	RESTful	API	Server	in
Python"	 video	 (https://powerfulpython.com/store/restful-api-server/),	 when	 I	 create	 the
validate_summary	 decorator.	 Applying	 the	 decorator	 to	 a	 couple	 of	 Flask	 views

immediately	triggers	a	routing	error,	which	I	then	fix	using	wraps.

167

https://github.com/GrahamDumpleton/wrapt
http://wrapt.readthedocs.org/
https://wiki.python.org/moin/DocumentationTools
https://powerfulpython.com/store/restful-api-server/

EXCEPTIONS	AND	ERRORS

Errors	happen.	That’s	why	every	practical	programming	language	provides	a
rich	framework	for	dealing	with	them.

Python’s	 error	model	 is	 based	 on	exceptions.	 Some	 of	 you	 reading	 this	 are
familiar	with	exceptions,	and	some	are	not;	some	of	you	have	used	exceptions
in	other	languages,	and	not	yet	with	Python.	This	chapter	is	for	all	of	you.

If	you	are	familiar	with	how	exceptions	work	in	Java,	C++	or	C#,	you’ll	find
Python	uses	similar	concepts,	even	if	the	syntax	is	completely	different.	And
beyond	those	similarities	lie	uniquely	Pythonic	patterns.

We’ll	 start	with	 the	basics	 some	of	 you	know.	Even	 if	 you’ve	used	Python
exceptions	before,	I	recommend	reading	all	of	this	chapter.	Odds	are	you	will
learn	useful	things,	even	in	sections	which	appear	to	discuss	what	you’ve	seen
before.

The	Basic	Idea

168

A n	exception	 is	 a	 way	 to	 interrupt	 the	 normal	 flow	 of	 code.	 When	 an
exception	occurs,	 the	block	of	Python	code	will	 stop	executing	 -	 literally	 in
the	 middle	 of	 the	 line	 -	 and	 immediately	 jump	 to	another	 block	 of	 code,
designed	to	handle	the	situation.

Often	an	exception	means	an	error	of	some	sort,	but	it	doesn’t	have	to	be.	It
can	 be	 used	 to	 signal	 anticipated	 events,	 which	 are	 best	 handled	 in	 an
interrupt-driven	way.	Let’s	 illustrate	 the	 common,	 simple	 cases	 first,	 before
exploring	more	sophisticated	patterns.

You’ve	already	encountered	exceptions,	even	if	you	didn’t	realize	it.	Here’s	a
little	program	using	a	dict:

#	favdessert.py

def	describe_favorite(category):

				"Describe	my	favorite	food	in	a	category."

				favorites	=	{

								"appetizer":	"calamari",

								"vegetable":	"broccoli",

								"beverage":	"coffee",

				}

				return	"My	favorite	{}	is	{}.".format(

								category,	favorites[category])

message	=	describe_favorite("dessert")

print(message)

When	run,	this	program	exits	with	an	error:

169

Traceback	(most	recent	call	last):

		File	"favdessert.py",	line	12,	in	<module>

				message	=	describe_favorite("dessert")

		File	"favdessert.py",	line	10,	in	describe_favorite

				category,	favorites[category])

KeyError:	'dessert'

When	you	look	up	a	missing	dictionary	key	like	this,	we	say	Python	raises	a
KeyError.	(In	other	languages,	the	terminology	is	"throw	an	exception".	Same
idea;	Python	uses	the	word	"raise"	instead	of	"throw".)	That	KeyError	is	an

exception.	In	fact,	most	errors	you	see	in	Python	are	exceptions.	This	includes
IndexError	for	lists,	TypeError	for	incompatible	types,	ValueError

for	bad	values,	and	so	on.	When	an	error	occurs,	Python	responds	by	raising
an	exception.

An	 exception	 needs	 to	 be	 handled.	 If	 not,	 your	 program	 will	 crash.	 You
handle	it	with	try-except	blocks.	They	look	like	this:

#	Replace	the	last	few	lines	with	the	following:

try:

				message	=	describe_favorite("dessert")

				print(message)

except	KeyError:

				print("I	have	no	favorite	dessert.	I	love	them	all!")

Notice	 the	 structure.	 You	 have	 the	 keyword	try,	 followed	 by	 an	 indented

block	of	code,	immediately	followed	by	except	KeyError,	which	has	its

170

▪

▪

▪

▪

own	 block	 of	 code.	 We	 say	 the	except	 block	catches	 the	KeyError

exception.

Run	the	program	with	these	new	lines,	and	you	get	the	following	output:

I	have	no	favorite	dessert.	I	love	them	all!

Importantly,	the	new	program	exits	successfully;	its	exit	code	to	the	operating
system	indicates	"success"	rather	than	"failure".

Here’s	how	try	and	except	work:

Python	starts	executing	lines	of	code	in	the	try:	block.

If	 Python	gets	 to	 the	 end	of	 the	try	 block	and	no	exceptions	 are	 raised,

Python	 skips	 over	 the	except	 block	 completely.	 None	 of	 its	 lines	 are

executed,	and	Python	proceeds	to	the	next	line	after	(if	there	is	one).

If	 an	 exception	 is	 raised	 anywhere	 in	 the	try	 block,	 the	 program

immediately	stops	-	literally	in	the	middle	of	the	line;	no	further	lines	in	the
try	 block	 will	 be	 executed.	 Python	 then	 checks	 whether	 the	 exception

type	(KeyError,	in	this	case)	matches	an	except	clause.	If	so,	it	jumps

to	the	matching	block’s	first	line.

If	 the	exception	does	not	match	 the	except	block,	 the	exception	ignores

it,	 acting	 like	 the	 block	 isn’t	 even	 there.	 If	 no	 higher-level	 code	 has	 an
except	block	to	catch	it,	the	program	will	crash.

171

Let’s	wrap	these	lines	of	code	in	a	function:

def	print_description(category):

				try:

								message	=	describe_favorite(category)

								print(message)

				except	KeyError:

								print("I	have	no	favorite	{}.	I	love	them	

all!".format(category))

Notice	how	print_description	behaves	differently,	depending	on	what

you	feed	it:

>>>	print_description("dessert")

I	have	no	favorite	dessert.	I	love	them	all!

>>>	print_description("appetizer")

My	favorite	appetizer	is	calamari.

>>>	print_description("beverage")

My	favorite	beverage	is	coffee.

>>>	print_description("soup")

I	have	no	favorite	soup.	I	love	them	all!

Exceptions	aren’t	just	for	damage	control.	You	will	sometimes	use	them	as	a
flow-control	 tool,	 to	 deal	 with	 ordinary	 variations	 you	 know	 can	 occur	 at
runtime.	Suppose,	for	example,	your	program	loads	data	from	a	file,	in	JSON
format.	You	import	the	json.load	function	in	your	code:

from	json	import	load

172

json	 is	 part	 of	 Python’s	 standard	 library,	 so	 it’s	 always	 available.	 Now,

imagine	there’s	an	open-source	library	called	speedyjson,[1]	with	a	load

function	 just	 like	what’s	 in	 the	 standard	 library	 -	 except	 twice	 as	 fast.	And
your	program	works	with	BIG	json	files,	so	you	want	to	preferentially	use	the
speedyjson	version	when	available.	 In	Python,	 importing	something	 that

doesn’t	exist	raises	an	ImportError:

#	If	speedyjson	isn't	installed...

>>>	from	speedyjson	import	load

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	2,	in	<module>

ImportError:	No	module	named	'speedyjson'

How	 can	 you	 use	speedyjson	 if	 it’s	 there,	 yet	 gracefully	 fall	 back	 on

json	when	it’s	not?	Use	a	try-except	block:

try:

				from	speedyjson	import	load

except	ImportError:

				from	json	import	load

If	speedyjson	is	installed	and	importable,	load	will	refer	to	its	version	of

the	function	in	your	code.	Otherwise	you	get	json.load.

A	 single	try	 can	have	multiple	except	 blocks.	 For	 example,	int()	will

raise	 a	TypeError	 if	passed	a	nonsensical	 type;	 it	 raises	ValueError	 if

173

the	type	is	acceptable,	but	its	value	can’t	be	converted	to	an	integer.

try:

				value	=	int(user_input)

except	ValueError:

				print("Bad	value	from	user")

except	TypeError:

				print("Invalid	type	(probably	a	bug)")

More	realistically,	you	might	log	different	error	events	[2]	with	different	levels
of	severity:

try:

				value	=	int(user_input)

except	ValueError:

				logging.error("Bad	value	from	user:	%r",	user_input)

except	TypeError:

				logging.critical(

								"Invalid	type	(probably	a	bug):	%r",	user_input)

If	an	exception	is	raised,	Python	will	check	whether	its	type	matches	the	first
except	block.	If	not,	it	checks	the	next.	The	first	matching	except	block

is	executed,	and	all	others	are	skipped	over	entirely	-	so	you	will	never	have
more	than	one	of	the	except	blocks	executed	for	a	given	try.	Of	course,	if

none	of	them	match,	the	exception	continues	rising	until	something	catches	it.
(Or	the	process	dies.)

174

There’s	a	good	 rule	of	 thumb,	which	 I	 suggest	you	start	building	as	a	habit
now:	put	 as	 little	 code	 as	 possible	 in	 the	try	 block.	 You	 do	 this	 so	 your

except	block(s)	will	not	catch	or	mask	errors	they	should	not.

Sometimes	 you	 will	 want	 to	 have	 clean-up	 code	 that	 runs	no	matter	 what,
even	if	an	exception	is	raised.	You	can	do	this	by	adding	a	finally	block:

try:

				line1

				line2

				#	etc.

finally:

				line1

				line2

				#	etc.

The	code	in	the	finally	block	is	always	executed.	If	an	exception	is	raised

in	 the	try	block,	Python	will	immediately	jump	to	the	finally	block,	run

its	lines,	then	raise	the	exception.	If	an	exception	is	not	raised,	Python	will	run
all	the	lines	in	the	try	block,	then	run	the	lines	in	the	finally	block.	It’s	a

way	to	say,	"run	these	lines	no	matter	what".

You	can	also	have	one	(or	more)	except	clauses:

try:

				line1

				line2

				#	etc.

175

except	FirstException:

				line1

				line2

				#	etc.

except	SecondException:

				line1

				line2

				#	etc.

finally:

				line1

				line2

				#	etc.

What’s	executed	and	when	depends	on	whether	an	exception	is	raised.	If	not,
the	lines	in	the	try	block	run,	followed	by	the	lines	in	the	finally	block;

none	of	the	except	blocks	run.	If	an	exception	is	raised,	and	it	matches	one

of	 the	except	blocks,	 then	 the	finally	block	runs	last.	The	order	is:	the

try	 block	 (up	 until	 the	 exception	 is	 raised),	 then	 the	 matching	except

block,	and	then	the	finally	block.

What	 if	 an	 exception	 is	 raised,	 but	 there	 is	 no	matching	 except	 block?	The
except	blocks	are	ignored,	because	none	of	them	match.	The	lines	of	code

i n	try	 are	 executed,	 up	 until	 the	 exception	 is	 raised.	 Python	 immediately

jumps	to	the	finally	block;	when	its	lines	finish,	only	then	is	the	exception

raised.

176

It’s	 important	 to	 understand	 this	 ordering.	 When	 you	 include	 a	finally

block,	and	an	exception	 is	 raised,	 the	code	 in	 the	finally	block	 interjects

itself	between	the	code	that	could	run	in	the	try	block,	and	the	raising	of	the

exception.	A	finally	block	is	like	insurance,	for	code	which	must	run,	no

matter	what.

Here’s	 a	 good	 example.	 Imagine	 writing	 control	 code	 that	 does	 batch
calculations	on	a	fleet	of	cloud	virtual	machines.	You	issue	an	API	call	to	rent
them,	 and	 pay	 by	 the	 hour	 until	 you	 release	 them.	 Your	 code	 might	 look
something	like:

#	fleet_config	is	an	object	with	the	details	of	what

#	virtual	machines	to	start,	and	how	to	connect	them.

fleet	=	CloudVMFleet(fleet_config)

#	job_config	details	what	kind	of	batch	calculation	to	

run.

job	=	BatchJob(job_config)

#	.start()	makes	the	API	calls	to	rent	the	instances,

#	blocking	until	they	are	ready	to	accept	jobs.

fleet.start()

#	Now	submit	the	job.	It	returns	a	RunningJob	handle.

running_job	=	fleet.submit_job(job)

#	Wait	for	it	to	finish.

running_job.wait()

#	And	now	release	the	fleet	of	VM	instances,	so	we

#	don't	have	to	keep	paying	for	them.

fleet.terminate()

177

Now	 imagine	running_job.wait()	 raises	 a	socket.timeout

exception	(which	means	the	network	connection	has	timed	out).	This	causes	a
stack	 trace,	 and	 the	 program	 crashes,	 or	 maybe	 some	 higher-level	 code
actually	catches	the	exception.

Regardless,	 now	fleet.terminate()	 is	 never	 called.	 Whoops.	 That

could	be	really	expensive.

To	 save	 your	 bank	 balance	 (or	 keep	 your	 job),	 rewrite	 the	 code	 using	 a
finally	block:

fleet	=	CloudVMFleet(fleet_config)

job	=	BatchJob(job_config)

try:

				fleet.start()

				running_job	=	fleet.submit_job(job)

				running_job.wait()

finally:

				fleet.terminate()

This	 code	expresses	 the	 idea:	 "no	matter	what,	 terminate	 the	 fleet	of	 rented
virtual	 machines."	 Even	 if	 an	 error	 in	fleet.submit_job(job)	 or

running_job.wait()	 makes	 the	 program	 crash,	 it	 calls

fleet.terminate()	with	its	dying	breath.

Let’s	look	at	dictionaries	again.	When	working	directly	with	a	dictionary,	you
can	use	 the	 "if	 key	 in	 dictionary"	pattern	 to	 avoid	 a	KeyError,	 instead	of

178

try/except	blocks:

#	Another	approach	we	could	have	taken	with	favdessert.py

def	describe_favorite_or_default(category):

				'Describe	my	favorite	food	in	a	category.'

				favorites	=	{

								"appetizer":	"calamari",

								"vegetable":	"broccoli",

								"beverage":	"coffee",

				}

				if	category	in	favorites:

								message	=	"My	favorite	{}	is	{}.".format(

								category,	favorites[category])

				else:

								message	=	"I	have	no	favorite	{}.	I	love	them	

all!".format(category)

				return	message

message	=	describe_favorite_or_default("dessert")

print(message)

The	general	pattern	is:

#	Using	"if	key	in	dictionary"	idiom.

if	key	in	mydict:

				value	=	mydict[key]

else:

				value	=	default_value

#	Contrast	with	"try/except	KeyError".

try:

179

				value	=	mydict[key]

except	KeyError:

				value	=	default_value

Many	 developers	 prefer	 using	 the	 "if	 key	 in	 dictionary"	 idiom,	 or	 using
dict.get().	But	these	aren’t	always	the	best	choice.	They	are	only	options

if	 your	 code	 has	 direct	 access	 to	 the	 dictionary,	 for	 one	 thing.	 Maybe
describe_favorite()	is	part	of	a	library,	and	you	can’t	change	it.	Even

if	it’s	open-source,	you	have	better	things	to	do	than	fork	a	library	every	time
a	 function	 interface	 isn’t	 convenient.	Or	maybe	describe_favorite()

is	code	you	control,	but	you	just	don’t	want	 to	change	it,	for	any	number	of
good	 reasons.	A	 try-except	 block	 catching	KeyError	 solves	 all	 these

problems,	because	it	lets	you	handle	the	situation	without	modifying	any	code
inside	describe_favorite()	itself.

Exceptions	Are	Objects
An	 exception	 is	 an	 object:	 an	 instance	 of	 an	 exception	 class.	KeyError,

IndexError,	 TypeError	 and	ValueError	 are	 all	 built-in	 classes,

which	 inherit	 from	 a	 base	 class	 called	Exception.	 Writing	 code	 like

except	 KeyError:	 means	 "if	 the	 exception	 just	 raised	 is	 of	 type

KeyError,	run	this	block	of	code."

So	far,	we	haven’t	dealt	with	those	exception	objects	directly.	And	often,	you
don’t	 need	 to.	 But	 sometimes	 you	 want	 more	 information	 about	 what

180

happened,	and	capturing	the	exception	object	can	help.	Here’s	the	structure:

try:

				do_something()

except	ExceptionClass	as	exception_object:

				handle_exception(exception_object)

where	ExceptionClass	 is	 some	 exception	 class,	 like	KeyError,	 etc.	 In	 the

except	 block,	exception_object	will	 be	 an	 instance	of	 that	 class.	You

can	 choose	 any	 name	 for	 that	 variable;	 no	 one	 actually	 calls	 it
exception_object,	preferring	shorter	names	like	ex,	exc,	or	err.	The

methods	and	contents	of	that	object	will	depend	on	the	kind	of	exception,	but
almost	all	will	have	an	attribute	called	args.	That	will	be	a	tuple	of	what	was

passed	 to	 the	 exception’s	 constructor.	 The	args	 of	 a	KeyError,	 for

example,	will	have	one	element	-	the	missing	key:

#	Atomic	numbers	of	noble	gasses.

nobles	=	{'He':	2,	'Ne':	10,

		'Ar':	18,	'Kr':	36,	'Xe':	54}

def	show_element_info(elements):

			for	element	in	elements:

							print('Atomic	number	of	{}	is	{}'.format(

													element,	nobles[element]))

try:

				show_element_info(['Ne',	'Ar',	'Br'])

except	KeyError	as	err:

				missing_element	=	err.args[0]

				print('Missing	data	for	element:	'	+	missing_element)

181

Running	this	code	gives	you	the	following	output:

Atomic	number	of	Ne	is	10

Atomic	number	of	Ar	is	18

Missing	data	for	element:	Br

The	 interesting	 bit	 is	 in	 the	except	 block.	 Writing	except	KeyError

as	err	stores	the	exception	object	in	the	err	variable.	That	lets	us	look	up

the	 offending	 key,	 by	 peeking	 in	err.args.	 Notice	we	 could	 not	 get	 the

offending	 key	 any	 other	 way,	 unless	 we	 want	 to	 modify
show_element_info	(which	we	may	not	want	to	do,	or	perhaps	can’t	do,

as	described	before).

Let’s	 walk	 through	 a	 more	 sophisticated	 example.	 In	 the	os	 module,	 the

makedirs	function	will	create	a	directory:

#	Creates	the	directory	"riddles",	relative

#	to	the	current	directory.

import	os

os.makedirs("riddles")

By	 default,	 if	 the	 directory	 already	 exists,	makedirs	 will	 raise

FileExistsError:[3]	 Imagine	 you	 are	 writing	 a	 web	 application,	 and

need	 to	create	an	upload	directory	 for	each	new	user.	That	directory	should
not	 exist;	 if	 it	 does,	 that’s	 an	 error	 and	 needs	 to	 be	 logged.	 Our	 upload-
directory-creating	function	might	look	like	this:

182

#	First	version....

import	os

import	logging

UPLOAD_ROOT	=	"/var/www/uploads/"

def	create_upload_dir(username):

				userdir	=	os.path.join(UPLOAD_ROOT,	username)

				try:

								os.makedirs(userdir)

				except	FileExistsError:

								logging.error(

												"Upload	dir	for	new	user	already	exists")

It’s	great	we	are	detecting	and	logging	the	error,	but	 the	error	message	isn’t
informative	 enough	 to	 be	 helpful.	We	 at	 least	 need	 to	 know	 the	 offending
username,	but	it’s	even	better	to	know	the	directory’s	full	path	(so	you	don’t
have	to	dig	in	the	code	to	remind	yourself	what	UPLOAD_ROOT	was	set	to).

Fortunately,	FileExistsError	 objects	 have	 an	 attribute	 called

filename.	 This	 is	 a	 string,	 and	 the	 path	 to	 the	 already-existing	 directory.

We	can	use	that	to	improve	the	log	message:

#	Better	version!

import	os

import	logging

UPLOAD_ROOT	=	"/var/www/uploads/"

def	create_upload_dir(username):

				userdir	=	os.path.join(UPLOAD_ROOT,	username)

				try:

								os.makedirs(userdir)

183

				except	FileExistsError	as	err:

								logging.error("Upload	dir	already	exists:	%s",

												err.filename)

Only	 the	except	block	is	different.	That	filename	attribute	is	perfect	for

a	useful	log	message.

Raising	Exceptions
ValueError	is	a	built-in	exception	that	signals	some	data	is	of	the	correct

type,	but	its	format	isn’t	valid.	It	shows	up	everywhere:

>>>	int("not	a	number")

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

ValueError:	invalid	literal	for	int()	with	base	10:	'not	a	

number'

Your	 own	 code	 can	 raise	 exceptions,	 just	 like	int()	 does.	You	should,	 in

fact,	 so	you	have	better	error	messages.	 (And	sometimes	for	other	 reasons	-
more	on	 that	 later.)	You	do	 so	with	 the	raise	 statement.	The	most	 common
form	is	this:

raise	ExceptionClass(arguments)

For	ValueError	specifically,	it	might	look	like:

184

def	positive_int(value):

				number	=	int(value)

				if	number	<=	0:

								raise	ValueError("Bad	value:	"	+	str(value))

				return	number

Focus	on	the	raise	line	in	positive_int.	You	simply	create	an	instance

of	ValueError,	and	pass	it	directly	to	raise.	Really,	the	syntax	is	raise

exception_object	 -	 though	 usually	 you	 just	 create	 the	 object	 inline.

ValueError	's	 constructor	 takes	 one	 argument,	 a	 descriptive	 string.	 This
shows	up	in	stack	traces	and	log	messages,	so	be	sure	to	make	it	informative
and	useful:

>>>	positive_int("-3")

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	4,	in	positive_int

ValueError:	Bad	value:	-3

>>>	positive_int(-7.0)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	4,	in	positive_int

ValueError:	Bad	value:	-7.0

Let’s	show	a	more	complex	example.	Imagine	you	have	a	Money	class:

class	Money:

				def	__init__(self,	dollars,	cents):

								self.dollars	=	dollars

185

								self.cents	=	cents

				def	__repr__(self):

								'Renders	the	object	nicely	on	the	prompt.'

								return	"Money({},{})".format(

												self.dollars,	self.cents)

				#	Plus	other	methods,	which	aren't	important	to	us	

now.

Your	code	needs	to	create	Money	objects	from	string	values,	like	"$140.75".

The	constructor	takes	dollars	and	cents,	so	you	create	a	function	to	parse	that
string	and	instantiate	Money	for	you:

import	re

def	money_from_string(amount):

				#	amount	is	a	string	like	"$140.75"

				match	=	re.search(

								r'^\$(?P<dollars>\d+)\.(?P<cents>\d\d)$',	amount)

				dollars	=	int(match.group('dollars'))

				cents	=	int(match.group('cents'))

				return	Money(dollars,	cents)

This	function	[4]	works	like	this:

>>>	money_from_string("$140.75")

Money(140,75)

>>>	money_from_string("$12.30")

Money(12,30)

>>>	money_from_string("Big	money")

Traceback	(most	recent	call	last):

186

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	4,	in	money_from_string

AttributeError:	'NoneType'	object	has	no	attribute	'group'

This	 error	 isn’t	 clear;	 you	 must	 read	 the	 source	 and	 think	 about	 it	 to
understand	what	went	wrong.	We	have	better	things	to	do	than	decrypt	stack
traces.	 You	 can	 improve	 this	 function’s	 usability	 by	 having	 it	 raise	 a
ValueError.

import	re

def	money_from_string(amount):

				match	=	re.search(

								r'^\$(?P<dollars>\d+)\.(?P<cents>\d\d)$',	amount)

				#	Adding	the	next	two	lines	here

				if	match	is	None:

								raise	ValueError("Invalid	amount:	"	+	

repr(amount))

				dollars	=	int(match.group('dollars'))

				cents	=	int(match.group('cents'))

				return	Money(dollars,	cents)

The	error	message	is	now	much	more	informative:

>>>	money_from_string("Big	money")

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	6,	in	money_from_string

ValueError:	Invalid	amount:	'Big	money'

187

Catching	And	Re-raising
In	an	except	block,	you	can	re-raise	the	current	exception.	It’s	very	simple;

just	write	raise	by	itself,	with	no	arguments:

try:

				do_something()

except	ExceptionClass:

				handle_exception()

				raise

Notice	 you	 don’t	 need	 to	 store	 the	 exception	 object	 in	 a	 variable.	 It’s	 a
shorthand,	exactly	equivalent	to	this:

try:

				do_something()

except	ExceptionClass	as	err:

				handle_exception()

				raise	err

This	 "catch	 and	 release"	 only	 works	 in	 an	except	 block.	It	 requires	 that

some	 higher-level	 code	 will	 catch	 the	 exception	 and	 deal	 with	 it.	 Yet	 it
enables	 several	 useful	 code	 patterns.	 One	 is	 when	 you	 want	 to	 delegate
handling	the	exception	to	higher-level	code,	but	also	want	to	inject	some	extra
behavior	closer	to	the	exception	source.	For	example:

188

try:

				process_user_input(value)

except	ValueError:

				logging.info("Invalid	user	input:	%s",	value)

				raise

If	process_user_input	raises	a	ValueError,	 the	except	block	will

execute	the	logging	line.	Other	than	that,	the	exception	propagates	as	normal.

It’s	also	useful	when	you	need	to	execute	code	before	deciding	whether	to	re-
raise	the	exception	at	all.	Earlier,	we	used	a	try/except	block	pair	to	create	an
upload	directory,	logging	an	error	if	it	already	exists:

#	Remember	this?	Python	3	code,	from	earlier.

import	os

import	logging

UPLOAD_ROOT	=	"/var/www/uploads/"

def	create_upload_dir(username):

				userdir	=	os.path.join(UPLOAD_ROOT,	username)

				try:

								os.makedirs(userdir)

				except	FileExistsError	as	err:

								logging.error("Upload	dir	already	exists:	%s",

												err.filename)

This	relies	on	FileExistsError,	which	was	introduced	in	Python	3.	How

could	you	do	this	in	Python	2?	Even	if	you	no	longer	write	code	in	Python	2,

189

▪

▪

it’s	 worth	 studying	 the	 different	 approach	 required,	 as	 it	 demonstrates	 a
widely	useful	exception-handling	pattern.	Let’s	take	a	look.

FileExistsError	subclasses	the	more	general	OSError.	This	exception

type	 has	 been	 around	 since	 the	 early	 days	 of	 Python,	 and	 in	 Python	 2,
makedirs	 simply	 raises	OSError.	 But	OSError	 can	 indicate	 many

problems	 other	 than	 the	 directory	 already	 existing:	 a	 lack	 of	 filesystem
permissions,	a	system	call	getting	interrupted,	even	a	timeout	over	a	network-
mounted	 filesystem.	We	 need	 a	 way	 to	 discriminate	 between	 these
possibilities.

OSError	 objects	 have	 an	errno	 attribute,	 indicating	 the	 precise	 error.

These	 correspond	 to	 the	 variable	errno	 in	 a	 C	 program,	 with	 different

integer	 values	 meaning	 different	 error	 conditions.	 Most	 higher-level
languages	-	including	Python	-	reuse	the	constant	names	defined	in	the	C	API;
in	particular,	the	standard	constant	for	"file	already	exists"	is	EEXIST	(which

happens	to	be	set	to	the	number	17	in	most	implementations).	These	constants
are	defined	 in	 the	errno	module	 in	Python,	so	we	just	 type	from	errno

import	EEXIST	in	our	program.

In	versions	of	Python	with	FileExistsError,	the	general	pattern	is:

Optimistically	create	the	directory,	and

if	FileExistsError	is	raised,	catch	it	and	log	the	event.

190

▪

▪

▪

▪

In	Python	2,	we	must	do	this	instead:

Optimistically	create	the	directory.

if	OSError	is	raised,	catch	it.

Inspect	 the	 exception’s	errno	 attribute.	 If	 it’s	 equal	 to	EEXIST,	 this

means	the	directory	already	existed;	log	that	event.

If	errno	is	something	else,	it	means	we	don’t	want	to	catch	this	exception

here;	re-raise	the	error.

The	code:

#	How	to	accomplish	the	same	in	Python	2.

import	os

import	logging

from	errno	import	EEXIST

UPLOAD_ROOT	=	"/var/www/uploads/"

def	create_upload_dir(username):

				userdir	=	os.path.join(UPLOAD_ROOT,	username)

				try:

								os.makedirs(userdir)

				except	OSError	as	err:

								if	err.errno	!=	EEXIST:

												raise

								logging.error("Upload	dir	already	exists:	%s",

												err.filename)

191

The	 only	 difference	 between	 the	 Python	 2	 and	 3	 versions	 is	 the	 "except"
clause.	But	there’s	a	lot	going	on	there.	First,	we’re	catching	OSError	rather

than	FileExistsError.	 But	we	may	 or	may	 not	 re-raise	 the	 exception,

depending	on	the	value	of	its	errno	attribute.	Basically,	a	value	of	EEXIST

means	the	directory	already	exists.	So	we	log	it	and	move	on.	Any	other	value
indicates	an	error	we	aren’t	prepared	to	handle	right	here,	so	re-raise	in	order
to	pass	it	to	higher	level	code.

The	Most	Diabolical	Python	Anti-Pattern
You	 know	 about	 "design	 patterns":	 time-tested	 solutions	 to	 common	 code
problems.	 And	 you’ve	 probably	 heard	 of	 "anti-patterns":	 solutions	 people
often	choose	to	a	code	problem,	because	it	seems	to	be	a	good	approach,	but
actually	turn	out	to	be	harmful.

In	Python,	one	antipattern	is	most	harmful	of	all.

I	wish	I	could	not	even	tell	you	about	it.	If	you	don’t	know	it	exists,	you	can’t
use	 it	 in	your	code.	Unfortunately,	you	might	 stumble	on	 it	 somewhere	and
adopt	it,	not	realizing	the	danger.	So,	it’s	my	duty	to	warn	you.

Hereâ€™s	 the	 punchline.	 The	 following	 is	 the	most	 self-destructive	 code	 a
Python	developer	can	write:

192

try:

				do_something()

except:

				pass

Python	lets	you	completely	omit	the	argument	to	except.	If	you	do	that,	it

will	 catch	every	exception.	That’s	 pretty	 harmful	 right	 there;	 remember,	 the
more	 pin-pointed	 your	except	 clauses	 are,	 the	 more	 precise	 your	 error

handling	can	be,	without	sweeping	unrelated	errors	under	the	rug.	And	typing
except:	will	sweep	every	unrelated	error	under	the	rug.

But	 it’s	much	worse	 than	 that,	because	of	 the	pass	 in	 the	except	clause.

What	except:	pass	 does	 is	 silently	 and	 invisibly	 hide	 error	 conditions

that	you’d	otherwise	quickly	detect	and	fix.

(Instead	 of	"except:",	 you’ll	 sometimes	 see	 variants	 like	"except

Exception:"	or	"except	Exception	as	ex:".	They	amount	to	the

same	thing.)

This	 creates	 the	worst	 kind	 of	 bug.	Have	 you	 ever	 been	 troubleshooting	 a
bug,	and	 just	couldn’t	 figure	out	where	 in	 the	code	base	 it	came	from,	even
after	hours	of	searching,	getting	more	and	more	frustrated	as	the	minutes	and
hours	roll	by?	This	is	how	you	create	that	in	Python.

I	 first	 understood	 this	 anti-pattern	 after	 joining	 an	 engineering	 team,	 in	 an
explosively-growing	 Silicon	Valley	 start-up.	 The	 company’s	 product	 was	 a

193

web	service,	which	needed	to	be	up	24/7.	So	engineers	took	turns	being	"on
call"	 in	 case	 of	 a	 critical	 issue.	An	 obscure	 Unicode	 bug	 somehow	 kept
triggering,	waking	up	an	engineer	-	in	the	middle	of	the	night!	-	several	times
a	week.	But	no	one	could	figure	out	how	to	reproduce	the	bug,	or	even	track
down	exactly	how	it	was	happening	in	the	large	code	base.

After	a	few	months	of	this	nonsense,	some	of	the	senior	engineers	got	fed	up
and	devoted	themselves	to	rooting	out	the	problem.	One	senior	engineer	did
nothing	for	three	full	days	except	investigate	it,	ignoring	other	responsibilities
as	 they	piled	up.	He	made	some	progress,	and	took	useful	notes	on	what	he
found,	but	in	the	end	did	not	figure	it	out.	He	ran	out	of	time,	and	had	to	give
up.

Then,	 a	 second	 senior	 engineer	 took	 over.	 Using	 those	 notes	 as	 a	 starting
point,	he	also	dug	into	it,	ignoring	emails	and	other	commitments	for	another
three	full	days	to	track	down	the	problem.	And	he	failed.	He	make	progress,
adding	usefully	to	the	notes.	But	in	the	end,	he	had	to	give	up	too,	when	other
responsibilities	could	no	longer	be	ignored.

Finally,	after	these	six	days,	they	passed	the	torch	to	me	-	the	new	engineer	on
the	team.	I	wasn’t	too	familiar	with	the	code	base,	but	their	notes	gave	me	a
lot	to	go	on.	So	I	dove	in	on	Day	7,	and	completely	ignored	everything	else
for	six	hours	straight.

194

And	finally,	late	in	the	day,	I	was	able	to	isolate	the	problem	to	a	single	block
of	code:

try:

				extract_address(location_data)

except:

				pass

That	 was	 it.	 The	 data	 in	location_data	 was	 corrupted,	 causing	 the

extract_address	 call	 to	 raise	 a	UnicodeError.	Which	 the	 program

then	completely	silenced.	Not	 even	 producing	 a	 stack	 trace;	 simply	moving
on,	as	if	nothing	had	happened.

After	nearly	seven	full	days	of	engineer	effort,	we	pinpointed	the	error	to	this
one	 block	 of	 code.	 I	 un-suppressed	 the	 exception,	 and	 was	 almost
immediately	able	to	reproduce	the	bug	-	with	a	full	and	very	informative	stack
trace.

Once	I	did	that,	can	you	guess	how	long	it	took	us	to	fix	the	bug?

TEN	MINUTES.

That’s	right.	A	full	WEEK	of	engineer	time	was	wasted,	all	because	this	anti-
pattern	somehow	snuck	 into	our	code	base.	Had	 it	not,	 then	 the	 first	 time	 it
woke	up	an	engineer,	it	would	have	been	obvious	what	the	problem	was,	and

195

how	to	fix	it.	The	code	would	have	been	patched	by	the	end	of	the	day,	and
we	would	all	have	moved	on	to	bigger	and	better	things.

The	 cruelty	 of	 this	 anti-pattern	 comes	 from	 how	 it	 completely	 hides	all
helpful	 information.	Normally,	when	 a	 bug	 causes	 a	 problem	 in	 your	 code,
you	can	inspect	the	stack	trace;	identify	what	lines	of	code	are	involved;	and
start	 solving	 it.	 With	 The	 Most	 Diabolical	 Python	 Antipattern	 (TMDPA),
none	of	 that	 information	 is	 available.	What	 line	of	 code	did	 the	 error	 come
from?	 Which	file	 in	 your	 Python	 application,	 for	 that	matter?	 In	 fact,	what
was	the	exception	type?	Was	it	a	KeyError?	A	UnicodeError?	Or	even

a	NameError,	coming	from	a	mis-typed	variable	name?	Was	it	OSError,

and	if	so,	what	was	its	errno?	You	don’t	know.	You	can’t	know.

In	fact,	TMDPA	often	hides	the	fact	that	an	error	even	occurs.	This	is	one
of	 the	 ways	 bugs	 hide	 from	 you	 during	 development,	 then	 sneak	 into
production,	where	they’re	free	to	cause	real	damage.

We	never	did	figure	out	why	the	original	developer	wrote	except:	pass

to	 begin	 with.	 I	 think	 that	 at	 the	 time,	location_data	 may	 have

sometimes	been	empty,	causing	extract_address	to	innocuously	raise	a

ValueError.	 In	 other	 words,	 if	ValueError	 was	 raised,	 it	 was

appropriate	to	ignore	that	and	move	on.	By	the	time	the	other	two	engineers
and	 I	were	 involved,	 the	code	base	had	changed	so	 that	was	no	 longer	how

196

things	 worked.	 But	 the	 broad	except	 block	 remained,	 like	 a	 land	 mine

lurking	in	a	lush	field.

So	why	do	people	do	this?	Well,	no	one	wants	 to	wreak	such	havoc	in	their
Python	code,	of	course.	People	do	this	because	they	expect	errors	to	occur	in
the	 normal	 course	 of	 operation,	 in	 some	 specific	 way.	 They	 are	 simply
catching	too	broadly,	without	realizing	the	full	implications.

So	what	do	you	do	instead?	There	are	 two	basic	choices.	In	most	cases,	 it’s
best	to	modify	the	except	clause	to	catch	a	more	specific	exception.	For	the

situation	above,	this	would	have	been	a	much	better	choice:

try:

				extract_address(location_data)

except	ValueError:

				pass

H e r e ,	ValueError	 is	 caught	 and	 appropriately	 ignored.	 If

UnicodeError	 raises,	 it	 propagates	 and	 (if	 not	 caught)	 the	 program

crashes.	 That	 would	 have	 been	great	 in	 our	 situation.	 The	 error	 log	would
have	a	full	stack	trace	clearly	telling	us	what	happened,	and	we’d	be	able	to
fix	it	in	ten	minutes.

As	a	variation,	you	may	want	to	insert	some	logging:

197

try:

				extract_address(location_data)

except	ValueError:

				logging.info(

								"Invalid	location	for	user	%s",	username)

The	 other	 reason	 people	 write	except:	 pass	 is	 a	 bit	 more	 valid.

Sometimes,	 a	 code	 path	 simply	 must	 broadly	 catch	 all	 exceptions,	 and
continue	running	regardless.	This	is	common	in	the	top-level	loop	for	a	long-
running,	 persistent	 process.	 The	 problem	 is	 that	except:	pass	 hides	 all

information	about	the	problem,	including	that	the	problem	even	exists.

Fortunately,	Python	provides	an	easy	way	to	capture	that	error	event,	and	all
the	 information	 you	 need	 to	 fix	 it.	 The	logging	 module	 has	 a	 function

called	exception,	 which	will	 log	 your	message	along	with	 the	 full	 stack

trace	of	the	current	exception.	So	you	can	write	code	like	this:

import	logging

def	get_number():

				return	int('foo')

try:

				x	=	get_number()

except:

				logging.exception('Caught	an	error')

The	 log	will	contain	 the	error	message,	 followed	by	a	 formatted	stack	 trace
spread	across	several	lines:

198

ERROR:root:Caught	an	error

Traceback	(most	recent	call	last):

		File	"example-logging-exception.py",	line	5,	in	<module>

				x	=	get_number()

		File	"example-logging-exception.py",	line	3,	in	

get_number

				return	int('foo')

ValueError:	invalid	literal	for	int()	with	base	10:	'foo'

This	 stack	 trace	 is	priceless.	 Especially	 in	 more	 complex	 applications,	 it’s
often	not	enough	to	know	the	file	and	line	number	where	an	error	occurs.	It’s
at	least	as	important	to	know	how	that	function	or	method	was	called…		what
path	 of	 executed	 code	 led	 to	 it	 being	 invoked.	 Otherwise	 you	 can	 never
determine	what	conditions	lead	to	that	function	or	method	being	called	in	the
first	 place.	 The	 stack	 trace,	 in	 contrast,	 gives	 you	 everything	 you	 need	 to
know.

I	wish	"except:	pass"	was	not	valid	Python	syntax.	I	think	much	grief

would	 be	 spared	 if	 it	 was.	 But	 it’s	 not	 my	 call,	 and	 changing	 it	 now	 is
probably	 not	 practical.	 Your	 only	 defense	 is	 to	 be	 vigilant.	 That	 includes
educating	your	 fellow	developers.	Does	your	 team	hold	 regular	 engineering
meetings?	Ask	for	five	minutes	at	the	next	one	to	explain	this	antipattern,	the
cost	it	has	to	everyone’s	productivity,	and	the	simple	solutions.

Even	 better:	 if	 there	 are	 local	 Python	 or	 technical	 meetups	 in	 your	 area,
volunteer	to	give	a	short	talk	-	five	to	fifteen	minutes.	These	meetups	almost

199

always	 need	 speakers,	 and	 you	 will	 be	 helping	 so	 many	 of	 your	 fellow
developers	in	the	audience.

There	 is	 a	 longer	 article	 explaining	 this	 situation	 at
https://powerfulpython.com/blog/the-most-diabolical-python-antipattern/	 .
Simply	sharing	the	URL	will	educate	people	too.	And	feel	free	to	write	your
own	blog	post,	with	your	own	explanation	of	the	situation,	and	how	to	fix	it.
Serve	your	fellow	engineers	by	evangelizing	this	important	knowledge. �

200

https://powerfulpython.com/blog/the-most-diabolical-python-antipattern/

1	Not	a	real	library,	so	far	as	I	know.	But	after	this	book	is	published,	I’m	sure	one	of	you	will
make	a	library	with	that	name,	just	to	mess	with	me.

2	 Especially	 in	 larger	 applications,	 exception	 handling	 often	 integrates	 with	 logging.	 See	 the
logging	chapter	for	details.

3	Python	2	does	something	different,	and	more	complex.	We’ll	cover	that	in	detail	later.	For	now,
keep	reading.

4	 It’s	 better	 to	make	 this	 a	 class	method	 of	Money,	 rather	 than	 a	 separate	 function.	 That	 is	 a

separate	topic,	though;	see	@classmethod	in	the	object-oriented	patterns	chapter	for	details.

201

CLASSES	AND	OBJECTS

BEYOND	THE	BASICS

This	 chapter	 assumes	 you	 are	 familiar	 with	 Python’s	 OOP	 basics:	 creating
classes,	defining	methods,	and	using	inheritance.	We	build	on	this.

As	 with	 any	 object-oriented	 language,	 it’s	 useful	 to	 learn	 about	design
patterns	 -	 reusable	 solutions	 to	 common	 problems	 involving	 classes	 and
objects.	 A	 LOT	 has	 been	written	 about	 design	 patterns.	 Curiously,	 though,
much	of	what’s	out	there	doesn’t	completely	apply	to	Python	-	or,	at	least,	it
applies	differently.

That’s	 because	many	of	 these	design-pattern	books,	 articles,	 and	blog	posts
are	for	languages	like	Java,	C++	and	C#.	But	as	a	language,	Python	is	quite
different.	Its	 dynamic	 typing,	 first-class	 functions,	 and	 other	 additions	 all
mean	the	"standard"	design	patterns	just	work	differently.

So	let’s	learn	what	Pythonic	OOP	is	really	about.

Quick	Note	on	Python	2

202

This	 chapter	 uses	 Python	 3	 syntax.	 Python	 2.7	 is	 nearly	 the	 same,	 and	 I’ll
point	out	the	few	differences	as	we	go	along.	But	there	is	one	big	difference
worth	emphasizing	here.

In	modern	Python,	all	classes	need	to	inherit	from	a	built-in	base	class	called
object.	 (It’s	 lowercased,	 defying	 the	 normal	 convention.)	 This	 happens

automatically	for	all	classes	in	Python	3:

>>>	#	Python	3

...	class	Dog:

...					def	speak(self):

...									return	"woof"

...

>>>	dog	=	Dog()

>>>	isinstance(dog,	object)

True

In	Python	2,	you	must	explicitly	inherit	your	classes	from	object.	Fail	to	do

this,	and	your	class	builds	on	"old-style	classes":

>>>	#	Python	2

...	class	DogFromObject(object):

...					def	speak(self):

...									return	"woof"

...

>>>	class	DogNotFromObject:

...					def	speak(self):

...									return	"woof"

...

203

>>>	issubclass(DogFromObject,	object)

True

>>>	issubclass(DogNotFromObject,	object)

False

If	you	don’t	already	base	your	Python	2	classes	on	object,	start	today.	Old-

style	 classes	 are	 long	 obsolete,	 and	 removed	 in	 Python	 3;	 they	 partially	 or
completely	 break	 many	 important	 tools	 in	 Python’s	 object	 system,	 like
properties	 and	super().	The	rest	of	 this	chapter	assumes	you’re	 inheriting

from	object.

Properties
In	 object-oriented	 programming,	 a	property	 is	 a	 special	 sort	 of	 object
attribute.	 It’s	almost	a	cross	between	a	method	and	an	attribute.	The	 idea	 is
that	 you	 can,	 when	 designing	 the	 class,	 create	 "attributes"	 whose	 reading,
writing,	and	so	on	can	be	managed	by	special	methods.	In	Python,	you	do	this
with	a	decorator	named	property.	Here’s	an	example:

class	Person:

				def	__init__(self,	firstname,	lastname):

								self.firstname	=	firstname

								self.lastname	=	lastname

				@property

				def	fullname(self):

								return	self.firstname	+	"	"	+	self.lastname

204

By	instantiating	this,	I	can	access	fullname	as	a	kind	of	virtual	attribute:

>>>	joe	=	Person("Joe",	"Smith")

>>>	joe.fullname

'Joe	Smith'

Notice	 carefully	 the	 members	 here:	 there	 are	 two	 attributes	 called
firstname	and	lastname,	set	in	the	constructor.	There	is	also	a	method

c a l l e d	fullname.	 But	 after	 creating	 the	 object,	 we	 reference

joe.fullname	 as	 an	 attribute;	 we	 don’t	 call	joe.fullname()	 as	 a

method.

This	is	all	due	to	the	@property	decorator.	When	applied	to	a	method,	this

decorator	 makes	 it	 inaccessible	 as	 a	 method.	 You	 must	 access	 it	 as	 an
attribute.	In	fact,	if	you	try	to	call	it	as	a	method,	you	get	an	error:

>>>	joe.fullname()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	'str'	object	is	not	callable

As	defined	above,	fullname	is	read-only.	We	can’t	modify	it:

>>>	joe.fullname	=	"Joseph	Smith"

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

AttributeError:	can't	set	attribute

205

In	other	words,	Python	properties	 are	 read-only	by	default.	Another	way	of
saying	 this	 is	 that	@property	 automatically	 defines	 a	getter,	 but	 not	 a

setter.	If	you	do	want	fullname	to	be	writable,	here	is	how	you	define	the

setter:

class	Person:

				def	__init__(self,	firstname,	lastname):

								self.firstname	=	firstname

								self.lastname	=	lastname

				@property

				def	fullname(self):

								return	self.firstname	+	"	"	+	self.lastname

				@fullname.setter

				def	fullname(self,	value):

								self.firstname,	self.lastname	=	value.split("	",	

1)

This	lets	us	assign	to	joe.fullname:

>>>	joe	=	Person("Joe",	"Smith")

>>>	joe.firstname

'Joe'

>>>	joe.lastname

'Smith'

>>>	joe.fullname	=	"Joseph	Smith"

>>>	joe.firstname

206

'Joseph'

>>>	joe.lastname

'Smith'

The	 first	 time	 I	 saw	 this,	 I	 had	 all	 sorts	 of	 questions.	 "Wait,	 why	 is
fullname	 defined	 twice?	 And	 why	 is	 the	 second	 decorator	 named

@fullname,	 and	 what’s	 this	setter	 attribute?	 How	 on	 earth	 does	 this

even	compile?"

The	 code	 is	 actually	 correct,	 and	 designed	 to	 work	 this	 way.	 The
@property	def	fullname	must	come	first.	That	creates	 the	property	 to

begin	with,	and	also	creates	the	getter.	By	"create	the	property",	I	mean	that
an	object	named	fullname	exists	in	the	namespace	of	the	class,	and	it	has	a

method	 named	fullname.setter.	 This	fullname.setter	 is	 a

decorator	 that	 is	 applied	 to	 the	 next	def	fullname,	 christening	 it	 as	 the

setter	for	the	fullname	property.

It’s	okay	to	not	fully	understand	how	this	all	works.	A	full	explanation	relies
on	 understanding	 both	 implementing	 decorators,	 and	 Python’s	 descriptor
protocol,	 both	of	which	 are	beyond	 the	 scope	of	what	we	want	 to	 focus	on
here.	Fortunately,	you	don’t	have	to	understand	how	it	works	in	order	to	use
it.

(Besides	getting	and	setting,	you	can	handle	the	del	operation	for	the	object

attribute	 by	 decorating	 with	@fullname.deleter.	 You	won’t	 need	 this

207

very	often,	but	it’s	available	when	you	do.)

What	you	see	here	with	 the	Person	class	 is	one	way	properties	are	useful:

magic	 attributes	 whose	 values	 are	 derived	 from	 other	 values.	 This
denormalizes	 the	object’s	data,	and	 lets	you	access	 the	property	value	as	an
attribute	instead	of	as	a	method.	You’ll	see	a	situation	where	that’s	extremely
useful	later.

Properties	enable	a	useful	collection	of	design	patterns.	One	-	as	mentioned	-
is	 in	 creating	 read-only	 member	 variables.	 In	Person,	 the	fullname

"member	 variable"	 is	 a	 dynamic	 attribute;	 it	 doesn’t	 exist	 on	 its	 own,	 but
instead	calculates	its	value	at	run-time.

It’s	also	common	to	have	the	property	backed	by	a	single,	non-public	member
variable.	That	pattern	looks	like	this:

class	Coupon:

				def	__init__(self,	amount):

								self._amount	=	amount

				@property

				def	amount(self):

								return	self._amount

This	allows	the	class	itself	to	modify	the	value	internally,	but	prevent	outside
code	from	doing	so:

208

>>>	coupon	=	Coupon(1.25)

>>>	coupon.amount

1.25

>>>	coupon.amount	=	1.50

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

AttributeError:	can't	set	attribute

In	 Python,	 prefixing	 a	 member	 variable	 by	 a	 single	 underscore	 signals	 the
variable	 is	 non-public,	 i.e.	 it	 should	 only	 be	 accessed	 internally,	 inside
methods	of	that	class,	or	its	subclasses.[1]	What	this	pattern	says	is	"you	can
access	this	variable,	but	not	change	it".

Between	 "regular	 member	 variable"	 and	 "ready-only"	 is	 another	 pattern:
allow	 changing	 the	 attribute,	 but	 validate	 it	 first.	 Suppose	 my	 event-
management	 application	 has	 a	Ticket	 class,	 representing	 tickets	 sold	 to

concert-goers:

class	Ticket:

				def	__init__(self,	price):

								self.price	=	price

				#	And	some	other	methods...

One	 day,	 we	 find	 a	 bug	 in	 our	 web	 UI,	 which	 lets	 some	 shifty	 customers
adjust	the	price	to	a	negative	value…		so	we	ended	up	actually	paying	them	to
go	to	the	concert.	Not	good!

209

The	first	priority	is,	of	course,	to	fix	the	bug	in	the	UI.	But	how	do	we	modify
our	code	to	prevent	 this	from	ever	happening	again?	Before	reading	further,
look	at	the	Ticket	class	and	ponder	-	how	could	you	use	properties	to	make

this	kind	of	bug	impossible	in	the	future?

The	answer:	verify	the	new	price	is	non-zero	in	the	setter:

#	Version	1...

class	Ticket:

				def	__init__(self,	price):

								self._price	=	price

				@property

				def	price(self):

								return	self._price

				@price.setter

				def	price(self,	new_price):

								#	Only	allow	positive	prices.

								if	new_price	<	0:

												raise	ValueError("Nice	try")

								self._price	=	new_price

This	lets	the	price	be	adjusted…		but	only	to	sensible	values:

>>>	t	=	Ticket(42)

>>>	t.price	=	24	#	This	is	allowed.

>>>	print(t.price)

24

>>>	t.price	=	-1	#	This	is	NOT.

Traceback	(most	recent	call	last):

210

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	11,	in	price

ValueError:	Nice	try

However,	there’s	a	defect	in	this	new	Ticket	class.	Can	you	spot	what	it	is?

(And	how	to	fix	it?)

The	problem	is	that	while	we	can’t	change	the	price	to	a	negative	value,	this
first	version	lets	us	create	a	ticket	with	a	negative	price	to	begin	with.	That’s
because	we	write	self._price	=	price	in	the	constructor.	The	solution

is	to	use	the	setter	in	the	constructor	instead:

#	Final	version,	with	modified	constructor.	(Constructor

#	is	different;	code	for	getter	&	setter	is	the	same.)

class	Ticket:

				def	__init__(self,	price):

								#	instead	of	"self._price	=	price"

								self.price	=	price

				@property

				def	price(self):

								return	self._price

				@price.setter

				def	price(self,	new_price):

								#	Only	allow	positive	prices.

								if	new_price	<	0:

												raise	ValueError("Nice	try")

								self._price	=	new_price

211

Yes,	 you	 can	 reference	self.price	 in	 methods	 of	 the	 class.	 When	 we

write	self.price	=	price,	Python	translates	this	to	calling	the	price

setter	 -	 i.e.,	 the	 second	price()	 method.	 This	 final	 version	 of	Ticket

centralizes	 all	 reads	 AND	 writes	 of	self._price	 in	 the	 property.	 It’s	 a

useful	 encapsulation	 principle	 in	 general.	 The	 idea	 is	 you	 centralize	 any
special	behavior	for	that	member	variable	in	the	getter	and	setter,	even	for	the
class’s	internal	code.	In	practice,	sometimes	methods	need	to	violate	this	rule;
you	simply	reference	self._price	and	move	on.	But	avoid	that	where	you

can,	and	you	will	tend	to	benefit	from	higher	quality	code.

Properties	and	Refactoring

Properties	are	important	in	most	languages	today.	Here’s	a	situation	that	often
plays	out.	Imagine	writing	a	simple	money	class:

class	Money:

				def	__init__(self,	dollars,	cents):

								self.dollars	=	dollars

								self.cents	=	cents

				#	And	some	other	methods...

Suppose	 you	 put	 this	 class	 in	 a	 library,	 which	many	 developers	 are	 using.
People	 on	 your	 current	 team,	 perhaps	 developers	 on	 different	 teams.	 Or
maybe	you	release	it	as	open-source,	so	developers	around	the	world	use	and
rely	on	this	class.

212

Now,	one	day	you	realize	many	of	Money	's	methods	-	which	do	calculations
on	 the	 money	 amount	 -	 can	 be	 simpler	 and	 more	 straightforward	 if	 they
operate	on	the	total	number	of	cents,	rather	than	dollars	and	cents	separately.
So	you	refactor	the	internal	state:

class	Money:

				def	__init__(self,	dollars,	cents):

								self.total_cents	=	dollars	*	100	+	cents

This	minor	change	creates	a	MAJOR	maintainability	problem.	Can	you	spot
it?

Here’s	the	trouble:	your	original	Money	has	attributes	named	dollars	and

cents.	 And	 since	 many	 developers	 are	 using	 these,	 changing	 to

total_cents	breaks	all	their	code!

money	=	Money(27,	12)

message	=	"I	have	{:d}	dollars	and	{:d}	cents."

#	This	line	breaks,	because	there's	no	longer

#	dollars	or	cents	attributes.

print(message.format(money.dollars,	money.cents))

If	 no	 one	 but	 you	 uses	 this	 class,	 there’s	 no	 real	 problem	 -	 you	 can	 just
refactor	your	own	code.	But	 if	 that’s	not	 the	 case,	 coordinating	 this	 change
with	everyone’s	different	code	bases	 is	a	nightmare.	 It	becomes	a	barrier	 to
improving	your	own	code.

213

So,	what	do	you	do?	Can	you	think	of	a	way	to	handle	this	situation?

You	get	out	of	this	mess	is	with	properties.	You	want	two	things	to	happen:

1.	 Use	total_cents	internally,	and

2.	 All	 code	 using	dollars	 and	cents	 continues	 to	 work,	 without

modification.

You	 do	 this	 by	 replacing	dollars	 and	cents	 with	total_cents

internally,	 but	 also	 creating	 getters	 and	 setters	 for	 these	 attributes.	 Take	 a
look:

class	Money:

				def	__init__(self,	dollars,	cents):

								self.total_cents	=	dollars	*	100	+	cents

				#	Getter	and	setter	for	dollars...

				@property

				def	dollars(self):

								return	self.total_cents	//	100

				@dollars.setter

				def	dollars(self,	new_dollars):

								self.total_cents	=	100	*	new_dollars	+	self.cents

				#	And	for	cents.

				@property

				def	cents(self):

								return	self.total_cents	%	100

				@cents.setter

				def	cents(self,	new_cents):

								self.total_cents	=	100	*	self.dollars	+	new_cents

214

Now,	I	can	get	and	set	dollars	and	cents	all	day:

>>>	money	=	Money(27,	12)

>>>	money.total_cents

2712

>>>	money.cents

12

>>>	money.dollars	=	35

>>>	money.total_cents

3512

Python’s	 way	 of	 doing	 properties	 brings	 many	 benefits.	 In	 languages	 like
Java,	the	following	story	often	plays	out:

1.	 A	 newbie	 developer	 starts	 writing	 Java	 classes.	 They	 want	 to	 expose
some	state,	so	create	public	member	variables.

2.	 They	use	this	class	everywhere.	Other	developers	use	it	too.

3.	 One	day,	they	want	to	change	the	name	or	type	of	that	member	variable,
or	even	do	away	with	it	entirely	(like	what	we	did	with	Money).

4.	 But	that	would	break	everyone’s	code.	So	they	can’t.

Because	 of	 this,	 Java	 developers	 quickly	 learn	 to	 make	 all	 their	 variables
private	by	default	-	proactively	creating	getters	and	setters	for	every	publicly
exposed	chunk	of	data.	They	realize	this	boilerplate	is	far	less	painful	than	the
alternative,	 because	 if	 everyone	 must	 use	 the	 public	 getters	 and	 setters	 to
begin	with,	you	always	have	the	freedom	to	make	internal	changes	later.

215

▪

▪

This	 works	 well	 enough.	 But	 it	is	 distracting,	 and	 just	 enough	 trouble	 that
there’s	 always	 the	 temptation	 to	make	 that	member	 variable	 public,	 and	 be
done	with	it.

In	 Python,	 we	 have	 the	 best	 of	 both	 worlds.	 We	 make	 member	 variables
public	by	default,	refactoring	them	as	properties	if	and	when	we	ever	need	to.
No	one	using	our	code	even	has	to	know.

The	Factory	Patterns
There	 are	 several	 design	 patterns	 with	 the	 word	 "factory"	 in	 their	 names.
Their	 unifying	 idea	 is	 providing	 a	 handy,	 simplified	 way	 to	 create	 useful,
potentially	complex	objects.	The	two	most	important	forms	are:

Where	 the	 object’s	 type	 is	 fixed,	 but	 we	 want	 to	 have	 several	 different
ways	to	create	it.	This	is	called	the	Simple	Factory	Pattern.

Where	the	factory	dynamically	chooses	one	of	several	different	types.	This
is	called	the	Factory	Method	Pattern.

Let’s	look	at	how	you	do	these	in	Python.

Alternative	Constructors:	The	Simple	Factory

Imagine	a	simple	Money	class,	suitable	for	currencies	which	have	dollars	and

cents:

216

class	Money:

				def	__init__(self,	dollars,	cents):

								self.dollars	=	dollars

								self.cents	=	cents

We	looked	at	this	in	the	previous	section,	refactoring	its	attributes	-	but	let’s
roll	back,	and	focus	instead	on	the	constructor’s	interface.	This	constructor	is
convenient	when	we	have	the	dollars	and	cents	as	separate	integer	variables.
But	 there	 are	 many	 other	 ways	 to	 specify	 an	 amount	 of	 money.	 Perhaps
you’re	modeling	a	giant	jar	of	pennies:

#	Emptying	the	penny	jar...

total_pennies	=	3274

#	//	is	integer	division

dollars	=	total_pennies	//	100

cents	=	total_pennies	%	100

total_cash	=	Money(dollars,	cents)

Suppose	 your	 code	 splits	 pennies	 into	 dollars	 and	 cents	 over	 and	 over,	 and
you’re	 tired	of	 repeating	 this	calculation.	You	could	change	 the	constructor,
but	that	means	refactoring	all	Money-creating	code,	and	perhaps	a	lot	of	code

fits	 the	 current	 constructor	 better	 anyway.	 Some	 languages	 let	 you	 define
several	constructors,	but	Python	makes	you	pick	one.

In	 this	case,	you	can	usefully	create	a	factory	 function	 taking	 the	arguments
you	want,	creating	and	returning	the	object:

217

#	Factory	function	taking	a	single	argument,	returning

#	an	appropriate	Money	instance.

def	money_from_pennies(total_cents):

				dollars	=	total_cents	//	100

				cents	=	total_cents	%	100

				return	Money(dollars,	cents)

Imagine	that,	in	the	same	code	base,	you	also	routinely	need	to	parse	a	string
like	"$140.75".	Here’s	another	factory	function	for	that:

#	Another	factory,	creating	Money	from	a	string	amount.

import	re

def	money_from_string(amount):

				match	=	re.search(

								r'^\$(?P<dollars>\d+)\.(?P<cents>\d\d)$',	amount)

				if	match	is	None:

								raise	ValueError("Invalid	amount:	"	+	

repr(amount))

				dollars	=	int(match.group('dollars'))

				cents	=	int(match.group('cents'))

				return	Money(dollars,	cents)

These	 are	 effectively	 alternate	 constructors:	 callables	 we	 can	 use	 with
different	arguments,	which	are	parsed	and	used	to	create	the	final	object.	But
this	 approach	 has	 problems.	 First,	 it’s	 awkward	 to	 have	 them	 as	 separate
functions,	 defined	 outside	 of	 the	 class.	 But	 much	 more	 importantly:	 what
happens	 if	 you	 subclass	Money?	 Suddenly	money_from_string	 and

218

money_from_pennies	 are	 worthless.	 The	 base	Money	 class	 is	 hard-

coded.

Python	solves	these	problems	in	unique	way,	absent	from	other	languages:	the
classmethod	decorator.	Use	it	like	this:

class	Money:

				def	__init__(self,	dollars,	cents):

								self.dollars	=	dollars

								self.cents	=	cents

				@classmethod

				def	from_pennies(cls,	total_cents):

								dollars	=	total_cents	//	100

								cents	=	total_cents	%	100

								return	cls(dollars,	cents)

The	function	money_from_pennies	is	now	a	method	of	the	Money	class,

called	from_pennies.	But	it	has	a	new	argument:	cls.	When	applied	to	a

method	definition,	classmethod	modifies	how	that	method	is	invoked	and

interpreted.	The	 first	 argument	 is	 not	self,	which	would	be	 an	instance	of

the	 class.	 The	 first	 argument	 is	 now	the	 class	 itself.	 In	 the	 method	 body,
self	 isn’t	 mentioned	 at	 all;	 instead,	cls	 is	 a	 variable	 holding	 the	 current

class	object	-	Money	in	this	case.	So	the	last	line	is	creating	a	new	instance	of

Money:

219

>>>	piggie_bank_cash	=	Money.from_pennies(3217)

>>>	type(piggie_bank_cash)

<class	'__main__.Money'>

>>>	piggie_bank_cash.dollars

32

>>>	piggie_bank_cash.cents

17

Notice	from_pennies	is	invoked	off	the	class	itself,	not	an	instance	of	the

class.	 This	 already	 is	 nicer	 code	 organization.	 But	 the	 real	 benefit	 is	 with
inheritance:

>>>	class	TipMoney(Money):

...					pass

...

>>>	tip	=	TipMoney.from_pennies(475)

>>>	type(tip)

<class	'__main__.TipMoney'>

This	is	the	real	benefit	of	class	methods.	You	define	it	once	on	the	base	class,
and	all	subclasses	can	 leverage	 it,	 substituting	 their	own	type	for	cls.	This

makes	class	methods	perfect	 for	 the	 simple	 factory	 in	Python.	The	 final
line	returns	an	instance	of	cls,	using	its	regular	constructor.	And	cls	refers

to	whatever	the	current	class	is:	Money,	TipMoney,	or	some	other	subclass.

For	the	record,	here’s	how	we	translate	money_from_string:

220

def	from_string(cls,	amount):

				match	=	re.search(

								r'^\$(?P<dollars>\d+)\.(?P<cents>\d\d)$',	amount)

				if	match	is	None:

								raise	ValueError("Invalid	amount:	"	+	

repr(amount))

				dollars	=	int(match.group('dollars'))

				cents	=	int(match.group('cents'))

				return	cls(dollars,	cents)

Class	methods	are	a	superior	way	to	implement	factories	like	this	in	Python.
If	 we	 subclass	Money,	 that	 subclass	 will	 have	from_pennies	 and

from_string	 methods	 that	 create	 objects	 of	 that	 subclass,	 without	 any

extra	work	on	our	part.	And	if	we	change	the	name	of	 the	Money	class,	we

only	have	to	change	it	in	one	place,	not	three.

This	 form	 of	 the	 factory	 pattern	 is	 called	 "simple	 factory",	 a	 name	 I	 don’t
love.	 I	 prefer	 to	 call	 it	 "alternate	 constructor".	 Especially	 in	 the	 context	 of
Python,	 it	 describes	 well	 what	@classmethod	 is	 most	 useful	 for.	And	 it

suggests	a	general	principle	for	designing	your	classes.	Look	at	this	complete
code	of	the	Money	class,	and	I’ll	explain:

import	re

class	Money:

				def	__init__(self,	dollars,	cents):

								self.dollars	=	dollars

								self.cents	=	cents

				@classmethod

221

				def	from_pennies(cls,	total_cents):

								dollars	=	total_cents	//	100

								cents	=	total_cents	%	100

								return	cls(dollars,	cents)

				@classmethod

				def	from_string(cls,	amount):

								match	=	re.search(

												r'^\$(?P<dollars>\d+)\.(?P<cents>\d\d)$',	

amount)

								if	match	is	None:

												raise	ValueError("Invalid	amount:	"	+	

repr(amount))

								dollars	=	int(match.group('dollars'))

								cents	=	int(match.group('cents'))

								return	cls(dollars,	cents)

You	can	think	of	this	class	as	having	several	constructors.	As	a	general	rule,
you’ll	 want	 to	 make	__init__	 the	most	 generic	 one,	 and	 implement	 the

others	as	class	methods.	Sometimes,	that	means	one	of	the	class	methods	will
be	used	more	often	than	__init__.

When	using	a	new	class,	most	developer’s	 intuition	will	be	 to	 reach	 for	 the
default	constructor	first,	without	thinking	to	check	the	provided	class	methods
-	if	they	even	know	about	that	feature	of	Python	in	the	first	place.	So	in	that
situation,	you	may	need	to	educate	your	teammates.	(Hint:	Good	examples	in
the	class’s	code	docs	go	a	long	way.)

Dynamic	Type:	The	Factory	Method	Pattern

222

This	next	factory	pattern,	called	"Factory	Method",	is	quite	different.	The	idea
is	that	 the	factory	will	create	an	object,	but	will	choose	its	 type	from	one	of
several	possibilities,	dynamically	deciding	at	run-time	based	on	some	criteria.
It’s	 typically	used	when	you	have	one	base	class,	and	are	creating	an	object
that	can	be	one	of	several	different	derived	classes.

Let’s	 see	 an	 example.	 Imagine	 you	 are	 implementing	 an	 image	 processing
library,	creating	classes	to	read	the	image	from	storage.	So	you	create	a	base
ImageReader	class,	and	several	derived	types:

import	abc

class	ImageReader(metaclass=abc.ABCMeta):

				def	__init__(self,	path):

								self.path	=	path

				@abc.abstractmethod

				def	read(self):

								pass	#	Subclass	must	implement.

				def	__repr__(self):

								return	'{}({})'.format(self.__class__.__name__,	

self.path)

class	GIFReader(ImageReader):

				def	read(self):

								"Read	a	GIF"

class	JPEGReader(ImageReader):

				def	read(self):

								"Read	a	JPEG"

223

▪

▪

▪

class	PNGReader(ImageReader):

				def	read(self):

								"Read	a	PNG"

T h e	ImageReader	 class	 is	 marked	 abstract,	 requiring	 subclasses	 to

implement	the	read	method.	So	far,	so	good.

Now,	 when	 reading	 an	 image	 file,	 if	 its	 extension	 is	 ".gif",	 I	 want	 to	 use
GIFReader.	And	if	 it	 is	a	JPEG	image,	I	want	 to	use	JPEGReader.	And

so	on.	The	logic	is

Analyze	the	file	path	name	to	get	the	extension,

choose	the	correct	reader	class	based	on	that,

and	finally	create	the	appropriate	reader	object.

This	is	a	prime	candidate	for	automation.	Let’s	define	a	little	helper	function:

def	extension_of(path):

				position_of_last_dot	=	path.rfind('.')

				return	path[position_of_last_dot+1:]

With	these	pieces,	we	can	now	define	the	factory:

#	First	version	of	get_image_reader().

def	get_image_reader(path):

				image_type	=	extension_of(path)

				reader_class	=	None

				if	image_type	==	'gif':

224

								reader_class	=	GIFReader

				elif	image_type	==	'jpg':

								reader_class	=	JPEGReader

				elif	image_type	==	'png':

								reader_class	=	PNGReader

				assert	reader_class	is	not	None,	\

								'Unknown	extension:	{}'.format(image_type)

				return	reader_class(path)

Classes	in	Python	can	be	put	in	variables,	just	like	any	other	object.	We	take
full	 advantage	 here,	 by	 storing	 the	 appropriate	ImageReader	 subclass	 in

reader_class.	Once	we	decide	on	 the	proper	value,	 the	 last	 line	creates

and	returns	the	reader	object.

This	 correctly-working	 code	 is	 already	 more	 concise,	 readable	 and
maintainable	 than	 what	 some	 languages	 force	 you	 to	 go	 through.	 But	 in
Python,	we	can	do	better.	We	can	use	the	built-in	dictionary	type	to	make	it
even	more	readable	and	easy	to	maintain	over	time:

READERS	=	{

				'gif'	:	GIFReader,

				'jpg'	:	JPEGReader,

				'png'	:	PNGReader,

				}

def	get_image_reader(path):

				reader_class	=	READERS[extension_of(path)]

				return	reader_class(path)

225

Here	 we	 have	 a	 global	 variable	 mapping	 filename	 extensions	 to
ImageReader	 subclasses.	 This	 lets	 us	 readably	 implement

get_image_reader	 in	 two	 lines.	 Finding	 the	 correct	 class	 is	 a	 simple

dictionary	 lookup,	 and	 then	we	 instantiate	 and	 return	 the	 object.	And	 if	we
support	 new	 image	 formats	 in	 the	 future,	 we	 simply	 add	 a	 line	 in	 the
READERS	definition.	(And,	of	course,	define	its	reader	class.)

What	if	we	encounter	an	extension	not	in	the	mapping,	like	tiff?	As	written

above,	 the	 code	 will	 raise	 a	KeyError.	 That	 may	 be	 what	 we	 want.	 Or

closely	 related,	 perhaps	 we	 want	 to	 catch	 that,	 and	 re-raise	 a	 different
exception.

Alternatively,	we	may	want	to	fall	back	on	some	default.	Let’s	create	a	new
reader	class,	meant	as	an	all-purpose	fallback:

class	RawByteReader(ImageReader):

				def	read(self):

								"Read	raw	bytes"

Then	you	can	write	the	factory	like:

def	get_image_reader(path):

				try:

								reader_class	=	READERS[extension_of(path)]

				except	KeyError:

								reader_class	=	RawByteReader

				return	reader_class(path)

226

or	more	briefly

def	get_image_reader(path):

				return	READERS.get(extension_of(path),	RawByteReader)

This	design	pattern	 is	commonly	called	 the	"factory	method"	pattern,	which
wins	my	award	for	Worst	Design	Pattern	Name	In	History.	That	name	(which
appears	 to	 originate	 from	 a	 Java	 implementation	 detail)	 fails	 to	 tell	 you
anything	 about	 what	 it’s	 actually	for.	 I	 myself	 call	 it	 the	 "dynamic	 type"
pattern,	which	I	feel	is	much	more	descriptive	and	useful.

The	Observer	Pattern
The	Observer	pattern	provides	a	"one	to	many"	relationship.	That’s	vague,	so
let’s	make	it	more	specific.

In	 the	 observer	 pattern,	 there’s	 one	 root	 object,	 called	 the	observable.	 This
object	knows	how	to	detect	some	kind	of	event	of	interest.	It	can	literally	be
anything:	a	customer	makes	a	new	purchase;	someone	subscribes	to	an	email
list;	 or	 maybe	 it	 monitors	 a	 fleet	 of	 cloud	 instances,	 detecting	 when	 a
machine’s	 disk	 usage	 exceeds	 75%.	You	 use	 this	 pattern	when	 the	 code	 to
reliably	 detect	 the	 event	 of	 interest	 is	 at	 least	 slightly	 complicated;	 that
detection	code	is	encapsulated	inside	the	observable.

Now,	you	also	have	other	objects,	called	observers,	which	need	to	know	when
that	 event	 occurs,	 taking	 some	 action	 in	 response.	 You	 don’t	 want	 to	 re-

227

implement	 the	 robust	 detection	 algorithm	 in	 each,	 of	 course.	 Instead,	 these
observers	 register	 themselves	 with	 the	 observable.	 The	 observable	 then
notifies	each	observer	-	by	calling	a	method	on	that	observer	-	for	each	event.
This	separation	of	concerns	is	the	heart	of	the	observer	pattern.

Now,	 I	must	 tell	 you,	 I	 don’t	 like	 the	 names	 of	 things	 in	 this	 pattern.	 The
words	"observable"	and	"observer"	are	a	bit	obscure,	and	sound	confusingly
similar	 -	 especially	 to	 those	 whose	 native	 tongue	 is	 not	 English.	 There	 is
another	terminology,	however,	which	many	developers	find	easier:	pub-sub.

In	 this	 formulation,	 instead	 of	 "observable",	 you	 create	 a	publisher	 object,
which	watches	 for	 events.	And	 you	 have	 one	 or	more	subscribers	 who	 ask
that	publisher	to	notify	them	when	the	event	happens.	I’ve	found	the	pattern	is
easier	 to	reason	about	when	looked	at	 in	 this	way,	so	that’s	 the	 terminology
I’m	going	to	use.

Let’s	make	this	concrete,	with	code.

The	Simple	Observer

We’ll	start	with	the	basic	observer	pattern,	as	it’s	often	documented	in	design
pattern	books	-	except	we’ll	 translate	 it	 to	Python.	In	this	simple	form,	each
subscriber	must	implement	a	method	called	update.	Here’s	an	example:

class	Subscriber:

				def	__init__(self,	name):

								self.name	=	name

228

▪

▪

				def	update(self,	message):

								print('{}	got	message	"{}"'.format(

												self.name,	message))

update	 takes	a	string.	 It’s	okay	 to	define	an	update	method	taking	other

arguments,	 or	 even	 calling	 it	 something	 other	 than	update;	 the	 publisher

and	subscriber	just	need	to	agree	on	the	protocol.	But	we’ll	use	a	string.

Now,	when	a	publisher	detects	an	event,	 it	notifies	the	subscriber	by	calling
its	update	method.	Here’s	what	a	basic	Publisher	class	looks	like:

class	Publisher:

				def	__init__(self):

								self.subscribers	=	set()

				def	register(self,	who):

								self.subscribers.add(who)

				def	unregister(self,	who):

								self.subscribers.discard(who)

				def	dispatch(self,	message):

								for	subscriber	in	self.subscribers:

												subscriber.update(message)

				#	Plus	other	methods,	for	detecting	the	event.

Let’s	step	through:

A	publisher	needs	to	keep	track	of	its	subscribers,	right?	We’ll	store	them
in	a	set	object,	named	self.subscribers,	created	in	the	constructor.

A	subscriber	is	added	with	register.	Its	argument	who	is	an	instance	of

229

▪

▪

Subscriber.	Who	calls	register?	It	could	be	anyone.	The	subscriber

can	 register	 itself;	 or	 some	external	 code	 can	 register	 a	 subscriber	with	 a
specific	publisher.

unregister	is	there	in	case	a	subscriber	no	longer	needs	to	be	notified

of	the	events.

When	the	event	of	interest	occurs,	the	publisher	notifies	its	subscribers	by
calling	 its	dispatch	 method.	 Usually	 this	 will	 be	 invoked	 by	 the

publisher	 itself,	 in	 some	 other	 method	 of	 the	 class	 (not	 shown)	 that
implements	 the	 event-detection	 logic.	 It	 simply	 cycles	 through	 the
subscribers,	calling	.update()	on	each.

Using	these	two	classes	in	code	is	straightforward	enough:

#	Create	a	publisher	and	some	subscribers.

pub	=	Publisher()

bob	=	Subscriber('Bob')

alice	=	Subscriber('Alice')

john	=	Subscriber('John')

#	Register	the	subscribers,	so	they	get	notified.

pub.register(bob)

pub.register(alice)

pub.register(john)

Now,	the	publisher	can	dispatch	messages:

230

#	Send	a	message...

pub.dispatch("It's	lunchtime!")

#	John	unsubscribes...

pub.unregister(john)

#	...	and	a	new	message	is	sent.

pub.dispatch("Time	for	dinner")

Here’s	the	output	from	running	the	above:

John	got	message	"It's	lunchtime!"

Bob	got	message	"It's	lunchtime!"

Alice	got	message	"It's	lunchtime!"

Bob	got	message	"Time	for	dinner"

Alice	got	message	"Time	for	dinner"

This	 is	 the	basic	observer	pattern,	and	pretty	close	 to	how	you’d	 implement
the	idea	in	languages	like	Java,	C#,	and	C++.	But	Python’s	feature	set	differs
from	those	languages.	That	means	we	can	do	different	things.

So	let’s	explore	that.	If	we	leverage	Pythonic	features,	what	does	that	give	us?

A	Pythonic	Refinement

Python’s	functions	are	first-class	objects.	That	means	you	can	store	a	function
in	a	variable	-	not	the	value	returned	when	you	call	a	function,	but	store	the
function	 itself	 -	 as	 well	 as	 pass	 it	 as	 an	 argument	 to	 other	 functions	 and
methods.	Some	 languages	 support	 this	 too	 (or	 something	 like	 it,	 such	 as

231

function	 pointers),	 but	 Python’s	 strong	 support	 gives	 us	 a	 convenient

opportunity	for	this	design	pattern.

The	 standard	 observer	 pattern	 requires	 the	 publisher	 hard-code	 a	 certain
method	 -	usually	named	update	 -	 that	 the	subscriber	must	 implement.	But

maybe	 you	 need	 to	 register	 a	 subscriber	 which	 doesn’t	 have	 that	 method.
What	then?	If	it’s	your	own	class,	you	can	probably	just	add	it.	Or	if	you	are
importing	the	subscriber	class	from	another	library	(which	you	can’t	or	don’t
want	to	modify),	perhaps	you	can	add	the	method	by	subclassing	it.

Or	sometimes	you	can’t	do	any	of	those	things.	Or	you	could,	but	it’s	a	lot	of
trouble,	and	you	want	to	avoid	it.	What	then?

Let’s	 extend	 the	 traditional	 observer	 pattern,	 and	 make	register	 more

flexible.	Suppose	you	have	these	subscribers:

#	This	subscriber	uses	the	standard	"update"

class	SubscriberOne:

				def	__init__(self,	name):

								self.name	=	name

				def	update(self,	message):

								print('{}	got	message	"{}"'.format(

												self.name,	message))

#	This	one	wants	to	use	"receive"

class	SubscriberTwo:

				def	__init__(self,	name):

								self.name	=	name

232

				def	receive(self,	message):

								print('{}	got	message	"{}"'.format(

												self.name,	message))

SubscriberOne	 is	 the	 same	 subscriber	 class	 we	 saw	 before.

SubscriberTwo	 is	almost	 the	same:	 instead	of	update,	 it	has	a	method

named	receive.	 Okay,	 let’s	 modify	Publisher	 so	 it	 can	 work	 with

objects	of	either	subscriber	type:

class	Publisher:

				def	__init__(self):

								self.subscribers	=	dict()

				def	register(self,	who,	callback=None):

								if	callback	is	None:

												callback	=	who.update

								self.subscribers[who]	=	callback

				def	dispatch(self,	message):

								for	callback	in	self.subscribers.values():

												callback(message)

				def	unregister(self,	who):

								del	self.subscribers[who]

There’s	 a	 lot	 going	 on	 here,	 so	 let’s	 break	 it	 down.	Look	 first	 at	 the
constructor:	it	creates	a	dict	instead	of	a	set.	You’ll	see	why	in	a	moment.

Now	focus	on	register:

233

				def	register(self,	who,	callback=None):

								if	callback	is	None:

												callback	=	who.update

								self.subscribers[who]	=	callback

It	 can	 be	 called	 with	 one	 or	two	 arguments.	 With	 one	 argument,	who	 is	 a

subscriber	 of	 some	 sort,	 and	callback	 defaults	 to	None.	 Inside,

callback	 is	 set	 to	who.update.	 Notice	 the	 lack	 of	 parentheses;

who.update	 is	 a	method	object.	 It’s	 just	 like	 a	 function	 object,	 except	 it

happens	 to	 be	 tied	 to	 an	 instance.	And	 just	 like	 a	 function	 object,	 you	 can
store	it	in	a	variable,	pass	it	as	an	argument	to	another	function,	and	so	on.[2]

So	we’re	storing	it	in	a	variable	called	callback.

What	if	register	is	called	with	2	arguments?	Here’s	how	that	might	look:

pub	=	Publisher()

alice	=	SubscriberTwo('Alice')

pub.register(alice,	alice.receive)

alice.receive	is	another	method	object;	inside,	this	object	is	assigned	to

callback.	Regardless	of	whether	register	 is	called	with	one	argument

or	two,	the	last	line	inserts	callback	into	the	dictionary:

								self.subscribers[who]	=	callback

234

Take	a	moment	to	appreciate	the	remarkable	flexibility	of	Python	dictionaries.
Here,	 you	 are	 using	 an	 arbitrary	 instance	 of	 either	SubscriberOne	 or

SubscriberTwo	as	a	key.	These	two	classes	are	unrelated	by	inheritance,

so	from	Python’s	viewpoint	 they	are	completely	distinct	 types.	And	for	 that
key,	 you	 insert	 a	method	 object	 as	 its	 value.	 Python	 does	 this	 seamlessly,
without	complaint!	Many	languages	would	make	you	jump	through	hoops	to
accomplish	this.

Anyway,	 now	 it’s	 clear	 why	self.subscribers	 is	 a	dict	 and	 not	 a

set.	Earlier,	we	only	needed	to	keep	track	to	who	the	subscribers	were.	Now,

we	also	need	to	remember	the	callback	for	each	subscriber.	These	are	used	in
the	dispatch	method:

				def	dispatch(self,	message):

								for	callback	in	self.subscribers.values():

												callback(message)

dispatch	only	needs	to	cycle	through	the	values,[3]	because	it	just	needs	to

call	each	subscriber’s	update	method	(even	if	it’s	not	called	update).	Notice

we	 don’t	 have	 to	 reference	 the	 subscriber	 object	 to	 call	 that	 method;	 the
method	object	internally	has	a	reference	to	its	instance	(i.e.	its	â€œselfâ€),	so
callback(message)	 calls	 the	 right	method	 on	 the	 right	 object.	In	 fact,

the	only	reason	we	keep	track	of	subscribers	at	all	is	so	we	can	unregister

them.

235

Let’s	put	this	together	with	a	few	subscribers:

pub	=	Publisher()

bob	=	SubscriberOne('Bob')

alice	=	SubscriberTwo('Alice')

john	=	SubscriberOne('John')

pub.register(bob,	bob.update)

pub.register(alice,	alice.receive)

pub.register(john)

pub.dispatch("It's	lunchtime!")

pub.unregister(john)

pub.dispatch("Time	for	dinner")

Here’s	the	output:

Bob	got	message	"It's	lunchtime!"

Alice	got	message	"It's	lunchtime!"

John	got	message	"It's	lunchtime!"

Bob	got	message	"Time	for	dinner"

Alice	got	message	"Time	for	dinner"

Now,	pop	quiz.	Look	at	the	Publisher	class	again:

class	Publisher:

				def	__init__(self):

								self.subscribers	=	dict()

				def	register(self,	who,	callback=None):

								if	callback	is	None:

												callback	=	who.update

236

								self.subscribers[who]	=	callback

				def	dispatch(self,	message):

								for	callback	in	self.subscribers.values():

												callback(message)

Here’s	the	question:	does	callback	have	to	be	a	method	of	the	subscriber?

Or	can	 it	be	a	method	of	a	different	object,	or	something	else?	Think	about
this	before	you	continue…	

It	 turns	 out	callback	 can	 be	any	 callable,	 provided	 it	 has	 a	 signature

compatible	 with	 how	 it’s	 called	 in	dispatch.	 That	 means	 it	 can	 be	 a

method	of	some	other	object,	or	even	a	normal	function.	This	lets	you	register
subscriber	objects	without	an	update	method	at	all:

#	This	subscriber	doesn't	have	ANY	suitable	method!

class	SubscriberThree:

				def	__init__(self,	name):

								self.name	=	name

#	...	but	we	can	define	a	function...

todd	=	SubscriberThree('Todd')

def	todd_callback(message):

				print('Todd	got	message	"{}"'.format(message))

#	...	and	pass	it	to	register:

pub.register(todd,	todd_callback)

#	And	then,	dispatch	a	message:

pub.dispatch("Breakfast	is	Ready")

Sure	enough,	this	works:

237

Todd	got	message	"Breakfast	is	Ready"

Several	Channels

So	far,	we’ve	assumed	the	publisher	watches	for	only	one	kind	of	event.	But
what	if	there	are	several?	Can	we	create	a	publisher	that	knows	how	to	detect
all	of	them,	and	let	subscribers	decide	which	they	want	to	know	about?

To	implement	this,	let’s	say	a	publisher	has	several	channels	that	subscribers
can	 subscribe	 to.	Each	 channel	 notifies	 for	 a	 different	 event	 type.	 For
example,	if	your	program	monitors	a	cluster	of	virtual	machines,	one	channel
signals	when	 a	 certain	machine’s	 disk	 usage	 exceeds	 75%	 (a	warning	 sign,
but	not	an	immediate	emergency);	and	another	signals	when	disk	usage	goes
over	90%	(much	more	serious,	and	may	begin	to	impact	performance	on	that
VM).	Some	subscribers	will	want	to	know	when	the	75%	threshold	is	crossed;
some,	the	90%	threshold;	and	some	might	want	to	be	alerted	for	both.	What’s
a	good	way	to	express	this	in	Python	code?

Let’s	 work	 with	 the	 mealtime-announcement	 code	 above.	 Rather	 than
jumping	 right	 into	 the	 code,	 let’s	 mock	 up	 the	interface	 first.	We	 want	 to
create	a	publisher	with	two	channels,	like	so:

#	Two	channels,	named	"lunch"	and	"dinner".

pub	=	Publisher(['lunch',	'dinner'])

238

So	the	constructor	is	different;	it	takes	a	list	of	channel	names.	Let’s	also	pass
the	channel	name	to	register,	since	each	subscriber	will	register	for	one	or

more:

#	Three	subscribers,	of	the	original	type.

bob	=	Subscriber('Bob')

alice	=	Subscriber('Alice')

john	=	Subscriber('John')

#	Two	args:	channel	name	&	subscriber

pub.register("lunch",	bob)

pub.register("dinner",	alice)

pub.register("lunch",	john)

pub.register("dinner",	john)

Now,	on	dispatch,	the	publisher	needs	to	specify	the	event	type.	So	just	like
with	register,	we’ll	prepend	a	channel	argument:

pub.dispatch("lunch",	"It's	lunchtime!")

pub.dispatch("dinner",	"Dinner	is	served")

When	correctly	working,	we’d	expect	this	output:

Bob	got	message	"It's	lunchtime!"

John	got	message	"It's	lunchtime!"

Alice	got	message	"Dinner	is	served"

John	got	message	"Dinner	is	served"

239

Pop	quiz	(and	if	it’s	practical,	pause	here	to	write	Python	code):	how	would
you	implement	this	new,	multi-channel	Publisher?

There	are	several	approaches,	but	the	simplest	I’ve	found	relies	on	creating	a
separate	subscribers	dictionary	for	each	channel.	One	approach:

class	Publisher:

				def	__init__(self,	channels):

								#	Create	an	empty	subscribers	dict

								#	for	every	channel

								self.channels	=	{	channel	:	dict()

																										for	channel	in	channels	}

				def	register(self,	channel,	who,	callback=None):

								if	callback	is	None:

												callback	=	who.update

								subscribers	=	self.channels[channel]

								subscribers[who]	=	callback

				def	dispatch(self,	channel,	message):

								subscribers	=	self.channels[channel]

								for	subscriber,	callback	in	subscribers.items():

												callback(message)

This	Publisher	has	a	dict	called	self.channels,	which	maps	channel

names	 (strings)	 to	 subscriber	 dictionaries.	register	 and	dispatch	 are

not	too	different:	they	simply	have	an	extra	step,	in	which	subscribers	is

looked	up	in	self.channels.	I	use	that	variable	just	for	readability,	and	I

think	it’s	well	worth	the	extra	line	of	code:

240

▪

▪

◦

◦

◦

▪

▪

#	Works	the	same.	But	a	bit	less	readable.

				def	register(self,	channel,	who,	callback=None):

								if	callback	is	None:

												callback	=	who.update

								self.channels[channel][who]	=	callback

These	are	some	variations	of	 the	general	observer	pattern,	and	I’m	sure	you
can	 imagine	 more.	What	 I	 want	 you	 to	 notice	 are	 the	 options	 available	 in
Python	when	you	leverage	function	objects,	and	other	Pythonic	features.

Magic	Methods
Suppose	we	want	to	create	a	class	to	work	with	angles,	in	degrees.	We	want
this	class	to	help	us	with	some	standard	bookkeeping:

An	angle	will	be	at	least	zero,	but	less	than	360.

If	we	create	an	angle	outside	this	range,	it	automatically	wraps	around	to	an
equivalent,	in-range	value.

In	fact,	we	want	the	conversion	to	happen	in	a	range	of	situations:

If	we	add	270Âº	and	270Âº,	it	evaluates	to	180Âº	instead	of	540Âº.

If	we	subtract	180Âº	from	90Âº,	it	evaluates	to	270Âº	instead	of	-90Âº.

If	we	multiply	an	angle	by	a	real	number,	it	wraps	the	final	value	into	the
correct	range.

And	 while	 we’re	 at	 it,	 we	 want	 to	 enable	 all	 the	 other	 behaviors	 we

241

normally	want	with	numbers:	comparisons	like	"less	than"	and	"greater	or
equal	than"	or	"=="	(i.e.,	equals);	division	(which	doesn’t	normally	require
casting	into	a	valid	range,	if	you	think	about	it);	and	so	on.

Let’s	see	how	we	might	approach	this,	by	creating	a	basic	Angle	class:

class	Angle:

				def	__init__(self,	value):

								self.value	=	value	%	360

The	modular	division	in	the	constructor	is	kind	of	neat:	if	you	reason	through
it	 with	 a	 few	 positive	 and	 negative	 values,	 you’ll	 find	 the	math	works	 out
correctly	whether	the	angle	is	overshooting	or	undershooting.	This	meets	one
of	our	key	criteria	already:	the	angle	is	normalized	to	be	from	0	up	to	360.	But
how	do	we	handle	addition?	We	of	course	get	an	error	if	we	try	it	directly:

>>>	Angle(30)	+	Angle(45)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	unsupported	operand	type(s)	for	+:	'Angle'	and	

'Angle'

>>>

We	 can	 easily	 define	 a	method	 called	add	 or	 something,	which	will	 let	 us

write	code	 like	angle3	=	angle1.add(angle2).	But	it’s	better	if	we

can	reuse	the	familiar	arithmetic	operators	everyone	knows.	Python	lets	us	do
that,	 through	 a	 collection	 of	 object	 hooks	 called	magic	methods.	 It	 lets	 you

242

define	classes	so	that	their	instances	can	be	used	with	all	of	Python’s	standard
operators.	That	includes	arithmetic	(+	-	*	/	//),	equality	(==),	inequality	(!=),
comparisons	 (<	 >	 >=	 <=),	 bit-shifting	 operations,	 and	 even	 concepts	 like
exponentiation	and	absolute	value.

Few	classes	will	need	all	of	these,	but	sometimes	it’s	invaluable	to	have	them
available.	Let’s	see	how	they	can	improve	our	Angle	type.

Simple	Math	Magic

The	pattern	for	each	method	is	the	same.	For	a	given	operation	-	say,	addition
-	 there	 is	 a	 special	 method	 name	 that	 starts	 and	 begins	 with	 double-
underscores.	 For	 addition,	 it’s	__add__	 -	 the	 others	 also	 have	 sensible

names.	All	you	have	to	do	is	define	that	method,	and	instances	of	your	class
can	be	used	with	that	operator.	These	are	the	magic	methods.

When	you	discuss	magic	methods	in	face-to-face,	verbal	conversation,	you’ll
find	 yourself	 saying	 things	 like	 "underscore	 underscore	 add	 underscore
underscore"	over	and	over.	That’s	a	lot	of	syllables,	and	you’ll	get	tired	of	it
fast.	So	people	 in	 the	Python	community	use	a	kind	of	verbal	 abbreviation,
with	a	word	 they	 invented:	"dunder".	That’s	not	a	real	word;	Python	people
made	it	up.	When	you	say	"dunder	foo",	it	means	"underscore	underscore	foo
underscore	underscore".	This	isn’t	used	in	writing,	because	it’s	not	needed	-
you	 can	 just	 write	__foo__.	 But	 at	 Python	 gatherings,	 you’ll	 sometimes

hear	people	say	it.	Use	it;	it	saves	you	a	lot	of	energy	when	talking.

243

Anyway,	 back	 to	 dunder	 add	 -	 I	 mean,	__add__.	 For	 operations	 like

addition	 -	which	 take	 two	values,	 and	 return	a	 third	 -	you	write	 the	method
like	this:

				def	__add__(self,	other):

									return	Angle(self.value	+	other.value)

The	 first	 argument	 needs	 to	 be	 called	 "self",	 because	 this	 is	 Python.	 The
second	does	not	have	 to	be	called	 "other",	but	often	 is.	This	 lets	us	use	 the
normal	addition	operator	for	arithmetic:

>>>	total	=	Angle(30)	+	Angle(45)

>>>	total.value

75

There	 are	 similar	 operators	 for	 subtraction	 (__sub__),	 multiplication

(__mul__),	and	so	on:

__add__ a	+	b

__sub__ a	-	b

__mul__ a	*	b

__truediv__ a	/	b	(floating-point	division)

__mod__ a	%	b

244

__pow__ a	**	b

Essentially,	 Python	 translates	a	 +	 b	 to	a.__add__(b);	 a	 %	 b	 to

a.__mod__(b);	and	so	on.	You	can	also	hook	into	bit-operation	operators:

__lshift__ a	<<	b

__rshift__ a	>>	b

__and__ a	&	b

__xor__ a	^	b

__or__ a	|	b

S o	a	 &	 b	 translates	 to	a.__and__(b),	 for	 example.	 Since	__and__

corresponds	 to	 the	 bitwise-and	 operator	 (for	 expressions	 like	"foo	 &

bar"),	you	might	wonder	what	 the	magic	method	 is	 for	logical-and	("foo

and	bar"),	or	logical-or	("foo	or	bar").	Sadly,	there	is	none.	For	this

reason,	sometimes	libraries	will	hijack	the	&	and	|	operators	to	mean	logical

and/or	instead	of	bitwise	and/or,	if	the	author	feels	the	logical	version	is	more
important.

The	default	representation	of	an	Angle	object	isn’t	very	useful:

245

>>>	Angle(30)

<__main__.Angle	object	at	0x106df9198>

It	tells	us	the	type,	and	the	hex	object	ID,	but	we’d	rather	it	tell	us	something
about	the	value	of	the	angle.	There	are	two	magic	methods	that	can	help.	The
first	is	__str__,	which	is	used	when	printing	a	result:

				def	__str__(self):

								return	'{}	degrees'.format(self.value)

The	print()	function	uses	this,	as	well	as	str(),	and	the	string	formatting

operations:

>>>	print(Angle(30))

30	degrees

>>>	print('{}'.format(Angle(30)	+	Angle(45)))

75	degrees

>>>	str(Angle(135))

'135	degrees'

Sometimes,	you	want	a	string	representation	that	is	more	precise,	which	might
be	 at	 odds	with	 a	 human-friendly	 representation.	 Imagine	 you	 have	 several
subclasses	 (e.g.,	PitchAngle	 and	YawAngle	 in	 some	 kind	 of	 aircraft-

related	library),	and	want	to	easily	log	the	exact	type	and	arguments	needed	to
recreate	the	object.	Python	provides	a	second	magic	method	for	this	purpose,
called	__repr__:

246

				def	__repr__(self):

								return	'Angle({})'.format(self.value)

You	access	this	by	calling	either	the	repr()	built-in	function	(think	of	it	as

working	 like	str(),	 but	 invokes	__repr__	 instead	 of	__str__),	 or	 by

passing	the	!r	conversion	to	the	formatting	string:

>>>	repr(Angle(30))

'Angle(30)'

>>>	print('{!r}'.format(Angle(30)	+	Angle(45)))

Angle(75)

The	official	guideline	is	that	the	output	of	__repr__	is	something	that	can

be	passed	 to	eval()	 to	 recreate	 the	object	exactly.	It’s	not	enforced	by	the

language,	and	isn’t	always	practical,	or	even	possible.	But	when	it	is,	doing	so
is	useful	for	logging	and	debugging.

We	 also	 want	 to	 be	 able	 to	 compare	 two	Angle	 objects.	 The	 most	 basic

comparison	is	equality,	provided	by	__eq__.	It	should	return	True	or	False:

				def	__eq__(self,	other):

								return	self.value	==	other.value

If	defined,	this	method	is	used	by	the	==	operator:

247

>>>	Angle(3)	==	Angle(3)

True

>>>	Angle(7)	==	Angle(1)

False

By	 default,	 the	==	 operator	 for	 objects	 is	 based	 off	 the	 object	 ID.	 That’s

rarely	useful:

>>>	class	BadAngle:

...					def	__init__(self,	value):

...									self.value	=	value

...

>>>	BadAngle(3)	==	BadAngle(3)

False

The	!=	operator	has	its	own	magic	method,	__ne__.	It	works	the	same	way:

				def	__ne__(self,	other):

								return	self.value	!=	other.value

What	 happens	 if	 you	 don’t	 implement	__ne__?	 In	Python	3,	 if	you	define

__eq__	 but	 not	__ne__,	 then	 the	!=	 operator	will	 use	__eq__,	negating

the	output.	Especially	for	simple	classes	like	Angle,	this	default	behavior	is

logically	valid.	So	in	this	case,	we	don’t	need	to	define	a	__ne__	method	at

all.	For	more	complex	types,	the	concepts	of	equality	and	inequality	may	have
more	subtle	nuances,	and	you	will	need	to	implement	both.

248

▪

▪

▪

▪

What’s	left	are	the	fuzzier	comparison	operations;	less	than,	greater	than,	and
so	on.	Python’s	documentation	calls	these	"rich	comparison"	methods,	so	you
can	feel	wealthy	when	using	them:

__lt__	for	"less	than"	(<)

__le__	for	"less	than	or	equal"	(<=)

__gt__	for	"greater	than"	(>)

__ge__	for	"greater	than	or	equal"	(>=)

For	example:

				def	__gt__(self,	other):

								return	self.value	>	other.value

Now	the	greater-than	operator	works	correctly:

>>>	Angle(100)	>	Angle(50)

True

Similar	 with	__ge__,	__lt__,	 etc.	 If	 you	 don’t	 define	 these,	 you	 get	 an

error,	at	least	in	Python	3:

>>>	BadAngle(8)	>	BadAngle(4)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	unorderable	types:	BadAngle()	>	BadAngle()

249

__gt__	and	__lt__	are	reflections	of	each	other.	What	that	means	is	that,

in	many	cases,	you	only	have	to	define	one	of	them.	Suppose	you	implement
__gt__	but	not	__lt__,	then	do	this:

>>>	a1	=	Angle(3)

>>>	a2	=	Angle(7)

>>>	a1	<	a2

True

This	works	thanks	to	some	just-in-time	introspection	the	Python	runtime	does.
T h e	a1	 <	 a2	 is,	 semantically,	 equivalent	 to	a1.__lt__(a2).	 If

Angle.__lt__	is	indeed	defined,	that	semantic	equivalent	is	executed,	and

the	expression	evaluates	to	its	return	value.

For	 normal	 scalar	 numbers,	n	<	m	 is	 true	 if	 and	 only	 if	m	>	n.	 For	 this

reason,	if	__lt__	does	not	exist,	but	__gt__	does,	then	Python	will	rewrite

the	angle	comparison:	a1.__lt__(a2)	 becomes	a2.__gt__(a1).	This

is	then	evaluated,	and	the	expression	a1	<	a2	is	set	to	its	return	value.

Note	there	are	situations	where	this	is	actually	not	what	you	want.	Imagine	a
Point	type,	for	example,	with	two	coordinates,	x	and	y.	You	want	point1

<	point2	 to	 be	True	 if	 and	 only	 if	point1.x	<	point2.x,	 AND

point1.y	<	point2.y.	 Similarly	 for	point1	>	point2.	There	are

many	points	for	which	both	point1	<	point2	and	point1	>	point2

should	both	evaluate	to	False.

250

For	 types	 like	 this,	you	will	want	 to	 implement	both	__gt__	 and	__lt__

(a n d	__ge__	 and	__le__.)	 You	 might	 also	 need	 to	 raise

NotImplemented	 in	 the	 method.	 This	 built-in	 exception	 signals	 to	 the

Python	 runtime	 that	 the	 operation	 is	 not	 supported,	 at	 least	 for	 these
arguments.

Shortcut:	functools.total_ordering
The	functools	 module	 in	 the	 standard	 library	 defines	 a	 class	 decorator

named	total_ordering.	 In	 practice,	 for	 any	 class	 which	 needs	 to

implement	 all	 the	 rich	 comparison	 operations,	 using	 this	 labor-saving
decorator	should	be	your	first	choice.

In	essence:	in	your	class,	you	define	both	__eq__	and	one	of	the	comparison

magic	methods:	__lt__,	__le__,	__gt__,	 or	__ge__.	 (You	can	define

more	 than	one,	but	 it’s	not	necessary.)	Then	you	apply	 the	decorator	 to	 the
class:

import	functools

@functools.total_ordering

class	Angle:

				#	...

				def	__eq__(self,	other):

								return	self.value	==	other.value

				def	__gt__(self,	other):

								return	self.value	>	other.value

251

When	you	do	this,	all	missing	rich	comparison	operators	are	supplied,	defined
in	 terms	of	__eq__	and	 the	one	operator	you	defined.	This	can	save	you	a

fair	amount	of	typing.

There	are	a	few	situations	where	you	won’t	want	to	use	total_ordering.

One	 is	 if	 the	comparison	 logic	 for	 the	 type	 is	not	well-behaved	enough	 that
each	 operator	 can	 be	 inferred	 from	 the	 other,	 via	 straightforward	 boolean
logic.	 The	Point	 class	 is	 an	example	of	 this,	 as	might	 some	 types	 if	what

you	are	implementing	boils	down	to	some	kind	of	abstract	algebra	engine.

The	other	reasons	not	to	use	it	are	(1)	performance,	and	(2)	the	more	complex
stack	 traces	 it	 generates	 are	more	 trouble	 than	 they	 are	worth.	Generally,	 I
recommend	you	assume	 these	are	not	a	problem	until	proven	otherwise.	It’s
entirely	 possible	 you	will	 never	 encounter	 one	 of	 the	 involved	 stack	 traces.
And	 the	 relatively	 inefficient	 implementations	 that	total_ordering

provides	are	unlikely	 to	be	a	problem	unless	deep	 inside	 some	nested	 loop.
Starting	 with	total_ordering	 takes	 little	 effort,	 and	 you	 can	 always

simply	remove	it	and	hand-code	the	other	magic	methods	if	you	need	to.

Python	2	!=	Python	3
Some	magic	methods	operate	a	bit	differently	 in	Python	2.	For	example,,	 if
__eq__	 is	 defined	 but	__ne__	 is	 not,	 then	!=	 does	not	 use	__eq__.

Instead,	it	relies	on	the	default	comparison	based	on	object	ID:

252

#	Python	2.

>>>	class	BadAngle(object):

...					def	__init__(self,	value):

...									self.value	=	value

...					def	__eq__(self,	other):

...									return	self.value	==	other.value

...

>>>	BadAngle(3)	!=	BadAngle(3)

True

You	will	 probably	 never	 actually	 want	 this	 behavior	 (which	 is	 why	 it	 was
changed	in	Python	3).	So	for	Python	2,	if	you	do	define	__eq__,	be	sure	to

define	__ne__	also:

#	A	good	default	__ne__	for	Python	2.

#	This	is	basically	what	Python	3	does	automatically.

				def	__ne__(self,	other):

								return	not	self.__eq__(other)

In	Python	3,	if	you	don’t	define	__lt__,	and	then	try	to	compare	two	objects

with	 the	<	operator,	you	get	 a	TypeError.	And	 likewise	 for	__gt__	and

the	 others.	 That’s	 a	very	 good	 thing.	 In	Python	2,	 you	 instead	get	 a	 default
ordering	based	off	the	object	ID.	This	can	lead	to	truly	infuriating	bugs:

#	Python	2.

>>>	class	BadAngle(object):

...					def	__init__(self,	value):

...									self.value	=	value

...

253

>>>

>>>	BadAngle(6)	<	BadAngle(5)

True

>>>	BadAngle(6)	<	BadAngle(5)

False

What	 the	 heck	 just	 happened?	 When	 parsing	 and	 running	 the	 first
BadAngle(6)	<	BadAngle(5)	 line,	 the	 Python	 runtime	 created	 two

BadAngle	instances.	It	turns	out	the	left-hand	object	was	created	with	an	ID

whose	 value	 happens	 to	 be	 less	 than	 that	 of	 the	 right-hand	 object.	 So	 the
expression	evaluates	as	True.	In	the	second	line,	the	opposite	happened:	the

right-hand	 object	won	 the	 race,	 so	 to	 speak,	 so	 the	 expression	 evaluates	 as
False.	Watch	out	 for	 this	 race	condition	 if	you	employ	magic	methods	 in

Python	2.

Rebelliously	Misusing	Magic	Methods
Magic	methods	are	interesting	enough,	and	quite	handy	when	you	need	them.
A	 realistic	 currency	 type	 is	 a	 good	 example.	But	 depending	 on	 the	 kind	 of
applications	you	work	on,	it’s	not	all	that	often	you	will	need	to	define	a	class
whose	instances	can	be	added,	subtracted,	or	compared.

Things	get	much	more	interesting,	though,	when	you	don’t	follow	the	rules.

Here’s	a	fascinating	fact:	methods	like	__add__	are	supposed	to	do	addition.

But	 it	 turns	 out	 Python	 doesn’t	 require	 it.	 And	 methods	 like	__gt__	 are

254

supposed	 to	 return	True	 or	False.	 But	 if	 you	 write	 a	__gt__	 which

returns	something	that	isn’t	a	bool…		Python	won’t	complain	at	all.

This	creates	some	amazing	possibilities.

To	 illustrate,	 let	 me	 tell	 you	 about	 Pandas.	As	 you	 may	 know,	 this	 is	 an
excellent	data-processing	library.	It’s	become	extremely	popular	among	data
scientists	 who	 use	 Python	 (like	 some	 of	 you	 reading	 this).	 Pandas	 has	 a
convenient	 data	 type	 called	 a	DataFrame.	 It	 represents	a	 two-dimensional

collection	of	data,	organized	into	rows,	with	labeled	columns:

import	pandas

df	=	pandas.DataFrame({

								'A':	[-137,	22,	-3,	4,	5],

								'B':	[10,	11,	121,	13,	14],

								'C':	[3,	6,	91,	12,	15],

				})

There	 are	 several	ways	 to	 create	 a	DataFrame;	 here	 I’ve	 chosen	 to	 use	 a

dictionary.	The	 keys	 are	 column	names;	 the	 values	 are	 lists,	which	 become
that	column’s	data.	So	you	visually	rotate	each	list	90	degrees:

>>>	print(df)

					A				B			C

0	-137			10			3

1			22			11			6

255

2			-3		121		91

3				4			13		12

4				5			14		15

The	rows	are	numbered	for	you,	and	the	columns	nicely	labeled	in	a	header.
The	A	column,	for	example,	has	different	positive	and	negative	numbers.

Now,	one	of	the	many	useful	things	you	can	do	with	a	DataFrame	is	filter

out	rows	meeting	certain	criteria.	This	doesn’t	change	the	original	dataframe;
instead,	 it	 creates	 a	new	 dataframe,	 containing	 just	 the	 rows	 you	want.	 For
example,	you	can	say	"give	me	the	rows	of	df	 in	which	 the	A	column	has	a

positive	value":

>>>	positive_a	=	df[df.A	>	0]

>>>	print(positive_a)

				A			B			C

1		22		11			6

3			4		13		12

4			5		14		15

All	you	have	to	do	is	pass	in	"df	>	0"	in	the	square	brackets.

But	 there’s	something	weird	going	on	here.	Take	a	look	at	the	line	in	which
positive_a	 is	 defined.	Do	you	notice	 anything	unusual	 there?	Anything

strange?

256

Here’s	 what	 is	 odd:	 the	 expression	"df	>	0"	 ought	 to	 evaluate	 to	 either

True,	or	False.	Right?	It’s	supposed	to	be	a	boolean	value…		with	exactly
one	 bit	 of	 information.	 But	 the	 source	 dataframe,	df,	 has	 many	 rows.

Realistic	dataframes	can	easily	have	tens	of	thousands,	even	millions	of	rows
of	data.	There’s	no	way	a	boolean	literal	can	express	which	of	those	rows	to
keep,	and	which	to	discard.	How	does	this	even	work?

Well…		turns	out,	it’s	not	boolean	at	all:

>>>	comparison	=	(df.A	>	0)

>>>	type(comparison)

<class	'pandas.core.series.Series'>

>>>	print(comparison)

0				False

1					True

2				False

3					True

4					True

Name:	A,	dtype:	bool

Yes,	 you	 can	 do	 that,	 thanks	 to	 Python’s	 dynamic	 type	 system.	 Python
translates	"df.A	 >	 0"	 into	"df.A.__gt__(0)".	 And	 that	__gt__

method	doesn’t	have	to	return	a	bool.	In	fact,	in	Pandas,	it	returns	a	Series

object	 (which	 is	 like	a	vector	of	data),	containing	True	 or	False	 for	each

row.	And	when	that’s	passed	into	df[]	-	the	square	brackets	being	handled

by	the	__getitem__	method	-	that	Series	object	is	used	to	filter	rows.

257

To	see	what	this	looks	like,	let’s	re-invent	part	of	the	interface	of	Pandas.	I’ll
create	 a	 library	 called	fakepandas,	 which	 instead	 of	DataFrame	 has	 a

type	called	Dataset:

class	Dataset:

				def	__init__(self,	data):

								self.data	=	data

								self.labels	=	sorted(data.keys())

				def	__getattr__(self,	label:	str):

								"Makes	references	like	df.A	work."

								return	Column(label)

				#	Plus	some	other	methods.

If	 I	 have	 a	Dataset	 object	 named	ds,	 with	 a	 column	 named	A,	 the

__getattr__	 method	 makes	 references	 like	ds.A	 return	 a	Column

object:

import	operator

class	Column:

				def	__init__(self,	name):

								self.name	=	name

				def	__gt__(self,	value):

									return	Comparison(self.name,	value,	operator.gt)

This	Column	 class	 has	 a	__gt__	 method,	 which	 makes	 expressions	 like

"ds.A	 >	 0"	 return	 an	 instance	 of	 a	 class	 called	Comparison.	 It

represents	 a	 lazy	 calculation,	 for	 when	 the	 actual	 filtering	 happens	 later.
Notice	 its	 constructor	 arguments:	 a	 column	 name,	 a	 threshold	 value,	 and	 a

258

callable	 to	 implement	 the	 comparison.	 (The	operator	 module	 has	 a

function	 called	gt,	 taking	 two	 arguments,	 expressing	 a	 greater-than

comparison).

You	 can	 even	 support	 complex	 filtering	 criteria	 like	ds[ds.C	 +	 2	 <

ds.B].	 It’s	 all	 possible	 by	 leveraging	magic	methods	 in	 these	 unorthodox

ways.	If	you	care	about	the	details,	there’s	an	article	delving	into	that.[4]	My
goal	here	isn’t	to	tell	you	how	to	re-invent	the	Pandas	interface,	so	much	as	to
get	you	to	realize	what’s	possible.

Have	you	ever	implemented	a	compiler?	If	so,	you	know	the	parsing	phase	is
a	 significant	 development	 challenge.	 Using	 Python	 magic	 methods	 in	 this
manner	does	much	of	 the	hard	work	of	 lexing	and	parsing	for	you.	And	the
best	part	is	how	natural	and	intuitive	the	result	can	be	for	end	users.	You	are
essentially	 implementing	 a	mini-language	 on	 top	 of	 regular	 Python	 syntax,
but	 consistently	 enough	 that	 people	 quickly	 become	 fluent	 and	 productive
with	its	rules.	And	they	often	won’t	even	think	to	ask	why	the	rules	seem	to
be	bent;	they	won’t	notice	"df.A	>	0"	isn’t	acting	like	a	boolean.	That’s	a

clear	 sign	 of	 success.	 It	 means	 you	 designed	 your	 library	 so	 well,	 other
developers	become	effortlessly	productive. �

259

1	 This	 isn’t	 enforced	 by	 Python	 itself.	If	 your	 teammates	 don’t	 already	 honor	 this	 widely-
followed	convention,	you’ll	have	to	educate	them.

2	This	is	all	detailed	in	the	"Advanced	Functions"	chapter.

3	In	Python	2:	Remember,	use	.viewvalues()	instead	of	.values().

4	 See	https://powerfulpython.com/blog/rebellious-magic-methods-python-syntax/	 .	 The	 article
explains	these	ideas	in	richer	detail,	and	includes	the	full	code	of	fakepandas	and	its	unit	test

suite.

260

https://powerfulpython.com/blog/rebellious-magic-methods-python-syntax/

AUTOMATED	TESTING	AND
TDD

Writing	 automated	 tests	 is	 one	 of	 those	 things	 that	 separates	 average
developers	from	the	best	in	the	world.	Master	this	skill,	and	you	will	be	able
to	write	far	more	complex	and	powerful	software	than	you	ever	could	before.
It’s	a	superpower,	and	changes	the	arc	of	your	career.

There	are	roughly	two	kinds	of	readers	for	this	chapter.	Some	of	you	have,	so
far,	 little	 or	 no	 experience	 writing	 automated	 tests,	 in	 any	 language.	 This
chapter	is	primarily	written	for	you.	It	introduces	many	fundamental	ideas	of
test	 automation,	 explains	 the	 problems	 it	 is	 supposed	 to	 solve,	 and	 teaches
how	to	apply	Python’s	tools	for	doing	so.

Or	 you	 might	 be	 someone	 with	 extensive	 experience	 using	 standard	 test
frameworks	 in	other	 languages:	 JUnit	 in	 Java,	PHPUnit	 in	PHP,	 and	 so	on.
Generally	 speaking,	 if	 you	 have	 mastered	 an	 xUnit	 framework	 in	 another
language,	 and	 are	 fluent	 in	 Python,	 you	may	 be	 able	 to	 start	 skimming	 the
Python’s	unittest	module	docs	[1]	and	be	productive	in	minutes.	Python’s

261

test	 library,	unittest,	 was	 originally	 based	 on	 JUnit	 3,	 and	 maps	 very

closely	to	how	most	xUnit	libraries	work.[2]

If	you	are	more	experienced,	I	believe	it’s	worth	your	time	to	at	least	skim	the
chapter,	and	perhaps	study	it	thoroughly.	In	writing,	I	invested	a	great	deal	of
effort	 weaving	 in	 useful,	 real-world	 wisdom	 -	 both	 for	 software	 testing	 in
general,	and	for	Python	specifically.	This	includes	topics	like	how	to	organize
Python	test	code;	writing	test	code	which	is	maintainable;	useful,	Python-only
features	 like	 subtests;	 and	even	cognitive	aspects	of	programming…		getting
into	an	enjoyable,	highly	productive	"flow"	state	via	test-driven	development.

With	that	in	mind,	let’s	start	with	the	core	ideas	for	writing	automated	tests.
We’ll	then	focus	on	writing	them	for	Python	programs.

What	is	Test-Driven	Development?
An	automated	test	is	a	program	that	tests	another	program.	Generally,	it	tests
a	 specific	 portion	 of	 that	 program:	 a	 function,	 a	 method,	 a	 class,	 or	 some
group	 of	 these	 things.	We	 call	 that	 portion	 the	 "system	 under	 test".	 If	 the
system	under	test	is	working	correctly,	the	test	passes;	if	not,	our	test	catches
that	 error,	 and	 immediately	 tells	 us	 what	 is	 wrong.	 Real	 applications
accumulate	many	of	these	tests	as	development	proceeds.

People	have	different	names	for	different	kinds	of	automated	tests:	unit	tests,
integration	tests,	end-to-end	tests,	etc.	These	distinctions	can	be	useful,	but	we

262

won’t	 need	 to	 worry	 about	 them	 right	 now.	 They	 all	 share	 the	 same
foundation.

In	 this	 chapter,	 we	 do	test-driven	 development,	 or	 TDD.	 Test-driven
development	 means	 you	 start	 working	 on	 each	 new	 feature	 or	 bugfix	 by
writing	 the	 automated	 test	 for	 it	first.	You	 run	 that	 test,	 verify	 it	 fails,	 and
only	then	do	you	write	the	actual	code	for	the	feature.	You	know	you	are	done
when	the	test	passes.

This	is	a	different	process	from	implementing	the	feature	first,	then	writing	a
test	for	it	after.	Writing	the	test	first	forces	you	to	think	through	the	interfaces
of	your	code,	answering	the	question	"how	will	I	know	my	code	is	working?"
That	immediate	benefit	is	useful,	but	not	the	whole	story.

The	 greatest	 mid-term	 benefits	 are	 mostly	 cognitive.	 As	 you	 become
competent	and	comfortable	with	test-driven	development,	you	learn	to	easily
get	 into	 a	 state	 of	 flow	 -	where	 you	 find	 yourself	 repeatedly	 implementing
feature	after	 feature,	keeping	your	 focus	with	ease	 for	 long	periods	of	 time.
You	 can	 honestly	 surprise	 and	 delight	 yourself	 with	 how	 much	 you’ve
accomplished	in	a	few	hours	of	coding.

But	 the	 greatest	 benefits	 emerge	 over	 time.	 We’ve	 all	 done	 substantial
refactorings	of	 a	 large	 code	 base,	 changing	 fundamental	 aspects	 of	 its
architecture.[3]	Such	refactorings	-	which	threaten	to	break	the	application	in
confusing,	hidden	ways	-	become	straightforward	and	safe	using	TDD.	You

263

take	 the	existing	body	of	 tests,	updating	where	needed	and	 introducing	new
tests	as	appropriate.	Then	all	you	have	to	do	is	make	them	pass.	It	may	still	be
a	 ton	 of	 work.	 But	 you	 can	 be	 fairly	 confident	 in	 the	 correctness	 and
robustness	of	the	result,	instead	of	hoping	and	praying.

Among	developers	who	know	how	to	write	tests,	some	love	to	do	test-driven
development	 in	 their	 day	 to	 day	work.	 Some	 like	 to	 do	 it	 part	 of	 the	 time;
some	hate	 it,	 and	 do	 it	 rarely,	 or	 never.	However,	 the	 absolute	 best	way	 to
quickly	 master	 unit	 testing	 is	 to	 strictly	 do	 test-driven	 development	 for	 a
while.	So	I’ll	teach	you	how	to	do	that.	You	don’t	have	to	do	it	forever	if	you
don’t	want	to.

Python’s	 standard	 library	 ships	 with	 two	 modules	 for	 creating	 unit	 tests:
doctest	and	unittest.	Most	engineering	teams	prefer	unittest,	as	it

is	more	full-featured	than	doctest.	This	isn’t	just	a	convenience.	There	is	a

real	 ceiling	 of	 complexity	 that	doctest	 can	 handle,	 and	 real	 applications

will	quickly	bump	up	against	that	limit.	With	unittest,	the	sky	is	more	or

less	the	limit.

In	addition	-	as	noted	above	-	unittest	maps	almost	exactly	to	the	xUnit

libraries	 used	 in	 many	 other	 languages.	If	 you	 are	 already	 familiar	 with
Python,	 and	 have	 used	 JUnit,	 PHPUnit,	 or	 any	 other	 xUnit	 library	 in	 any
language,	you	will	feel	right	at	home	with	unittest.	That	said,	unittest	has

some	unique	 tools	 and	 idioms	 -	 partly	because	of	differences	 in	 the	Python

264

language,	 and	 partly	 from	 unique	 extensions	 and	 improvements.	 We	 will
learn	the	best	of	what	unittest	has	to	offer	as	we	go	along.

Unit	Tests	And	Simple	Assertions
Imagine	a	class	representing	an	angle:

>>>	small_angle	=	Angle(60)

>>>	small_angle.degrees

60

>>>	small_angle.is_acute()

True

>>>	big_angle	=	Angle(320)

>>>	big_angle.is_acute()

False

>>>	funny_angle	=	Angle(1081)

>>>	funny_angle.degrees

1

>>>	total_angle	=	small_angle.add(big_angle)

>>>	total_angle.degrees

20

As	you	can	see,	Angle	keeps	track	of	the	angle	size,	wrapping	around	so	it’s

in	a	range	of	0	up	to	360	degrees.	There	is	also	an	is_acute	method,	to	tell

you	if	its	size	is	under	90	degrees,	and	an	add	method	for	arithmetic.[4]

Suppose	this	Angle	class	is	defined	in	a	file	named	angle.py.	Here’s	how

we	create	a	simple	test	for	it	-	in	a	separate	file,	named	test_angle.py:

265

▪

▪

▪

import	unittest

from	angle	import	Angle

class	TestAngle(unittest.TestCase):

				def	test_degrees(self):

								small_angle	=	Angle(60)

								self.assertEqual(60,	small_angle.degrees)

								self.assertTrue(small_angle.is_acute())

								big_angle	=	Angle(320)

								self.assertFalse(big_angle.is_acute())

								funny_angle	=	Angle(1081)

								self.assertEqual(1,	funny_angle.degrees)

				def	test_arithmetic(self):

								small_angle	=	Angle(60)

								big_angle	=	Angle(320)

								total_angle	=	small_angle.add(big_angle)

								self.assertEqual(20,	total_angle.degrees,

																									'Adding	angles	with	wrap-around')

As	you	look	over	this	code,	notice	a	few	things:

There’s	 a	 class	 called	TestAngle.	 You	 just	 define	 it,	 not	 create	 any

instance	of	it.	This	subclasses	TestCase.

You	define	two	methods,	test_degrees	and	test_arithmetic.

Both	test_degrees	 and	test_arithmetic	 have	 assertions,	 using

some	 methods	 of	TestCase:	 assertEqual,	 assertTrue,	 and

assertFalse.

266

▪ The	last	assertion	includes	a	custom	message,	as	its	third	argument.

To	 see	 how	 this	 works,	 let’s	 define	 a	 stub	 for	 the	Angle	 class	 in

angles.py:

#	angle.py,	version	1

class	Angle:

				def	__init__(self,	degrees):

								self.degrees	=	0

				def	is_acute(self):

								return	False

				def	add(self,	other_angle):

								return	Angle(0)

This	Angle	class	defines	all	the	attributes	and	methods	it	is	expected	to	have,

but	otherwise	can’t	do	anything	useful.	We	need	a	stub	like	this	to	verify	the
test	can	run	correctly,	and	alert	us	to	the	fact	that	the	code	isn’t	working	yet.

The	unittest	module	is	not	just	used	to	define	tests,	but	also	to	run	them.

You	do	so	on	the	command	line	like	this:

python3	-m	unittest	test_angles.py

When	you	run	the	test,[5]	and	you’ll	see	the	following	output:

$	python3	-m	unittest	test_angle.py

FF

==

267

▪

▪

▪

▪

FAIL:	test_arithmetic	(test_angle.TestAngle)

--

Traceback	(most	recent	call	last):

		File	"/src/test_angle.py",	line	18,	in	test_arithmetic

				self.assertEqual(20,	total_angle.degrees,	'Adding	

angles	with	wrap-around')

AssertionError:	20	!=	0	:	Adding	angles	with	wrap-around

==

FAIL:	test_degrees	(test_angle.TestAngle)

--

Traceback	(most	recent	call	last):

		File	"/src/test_angle.py",	line	7,	in	test_degrees

				self.assertEqual(60,	small_angle.degrees)

AssertionError:	60	!=	0

--

Ran	2	tests	in	0.001s

FAILED	(failures=2)

Notice:

Both	test	methods	are	shown.	They	both	have	a	failed	assertion	highlighted.

test_degrees	makes	several	assertions,	but	only	the	first	one	has	been

run	-	once	it	fails,	the	others	are	not	executed.

For	each	failing	assertion,	you	are	given	the	line	number;	the	expected	and
actual	values;	and	its	test	method.

The	custom	message	in	test_arithmetic	shows	up	in	the	output.

268

This	demonstrates	one	useful	way	to	organize	your	test	code.	In	a	single	test
module	 (test_angle.py),	 you	 define	 one	 or	 more	 subclasses	 of

unittest.TestCase.	 Here,	 I	 just	 define	TestAngle,	 containing	 tests

for	 the	Angle	 class.	Within	 this,	 I	 create	 several	 test	methods,	 for	 testing

different	aspects	of	the	class.	And	in	each	of	these	test	methods,	I	can	have	as
many	assertions	as	makes	sense.

Some	 of	 the	 naming	 conventions	matter.	 It’s	 traditional	 to	 start	 a	 test	 class
name	with	the	string	Test,	but	that	is	not	required;	unittest	will	find	all

subclasses	of	TestCase	automatically.	But	every	method	must	start	with	the

string	"test".	If	it	starts	with	anything	else	(even	"Test"!),	unittest	will	not

run	its	assertions.

Running	the	test	and	watching	it	fail	is	an	important	first	step.	It	verifies	that
the	 test	 does,	 in	 fact,	 actually	 test	 your	 code.	As	 you	write	more	 and	more
tests,	you’ll	occasionally	create	the	test;	run	it,	expecting	it	to	fail;	and	find	it
unexpectedly	passes.	That’s	a	bug	in	your	test	code!	Fortunately	you	ran	the
test	first,	so	you	caught	it	right	away.

In	the	test	code,	we	defined	test_degrees	 before	test_arithmetic,

but	 they	were	actually	run	 in	 the	opposite	order.	 It’s	 important	 to	craft	your
test	methods	to	be	self-contained,	and	not	depend	on	one	being	run	before	the
other;	the	order	of	execution	is	essentially	random.[6]

269

At	this	point,	we	have	a	correctly	failing	test.	If	I’m	using	version	control	and
working	 in	 a	 branch,	 this	 is	 a	 good	 commit	 point	 -	 check	 in	 the	 test	 code,
because	 it	 specifies	 the	 correct	 behavior	 (even	 if	 it’s	 presently	 failing).	The
next	step	is	to	actually	make	that	test	pass.	Here’s	one	way	to	do	it:

#	angle.py,	version	2

class	Angle:

				def	__init__(self,	degrees):

								self.degrees	=	degrees	%	360

				def	is_acute(self):

								return	self.degrees	<	90

				def	add(self,	other_angle):

								return	Angle(self.degrees	+	other_angle.degrees)

Now	when	I	run	my	test	again,	the	test	passes:

python3	-m	unittest	test_angle1.py

..

--

Ran	2	tests	in	0.000s

OK

This	becomes	your	second	commit	in	version	control.

assertEqual,	 assertTrue	 and	assertFalse	 will	 be	 the	 most

common	 assertion	 methods	 you’ll	 use,	 along	 with	assertNotEqual

(which	 does	 the	 opposite	 of	assertEqual).	 Many	 others	 are	 provided,

270

such	 as	assertIs,	 assertIsNone,	 assertIn,	 and

assertIsInstance	 -	 along	 with	 "not"	 variants	 (e.g.	assertIsNot).

Each	 takes	 a	 optional	 final	 message-string	 argument,	 like	 "Adding	 angles
with	 wrap-around"	 in	test_arithmetic	 above.	 If	 the	 test	 fails,	 this	 is

printed	 in	 the	 output,	 which	 can	 give	 very	 helpful	 advice	 to	 whomever	 is
troubleshooting	a	broken	test.[7]

If	 you	 try	 checking	 that	 two	 dictionaries	 are	 equal,	 and	 they	 are	 not,	 the
output	is	tailored	to	the	data	type:	highlighting	which	key	is	missing,	or	which
value	is	incorrect,	for	example.	This	also	happens	with	lists,	tuples,	and	sets,
making	 troubleshooting	 much	 easier.	 What’s	 actually	 happening	 is	 that
unittest	 provides	 certain	 type-specialized	 assertions,	 like

assertDictEqual,	assertListEqual,	 and	more.	 You	 almost	 never

need	 to	 invoke	 them	 directly:	 if	 you	 invoke	assertEqual	 with	 two

dictionaries,	it	automatically	dispatches	to	assertDictEqual,	and	similar

for	the	other	types.	So	you	get	this	usefully	detailed	error	reporting	for	free.

Notice	 the	assertEqual	lines	take	two	arguments,	and	I	always	wrote	the

expected,	correct	value	first:

small_angle	=	Angle(60)

self.assertEqual(60,	small_angle.degrees)

It	does	not	matter	whether	the	expected	value	is	first,	or	second.	But	it’s	smart
to	pick	an	order	and	stick	with	it	-	at	least	throughout	a	single	codebase,	and

271

maybe	 for	 all	 code	 you	 write.	 Sticking	 with	 a	 consistent	 order	 greatly
improves	 the	 readability	 of	 your	 test	 output,	 because	 you	 never	 have	 to
decipher	which	 is	which.	Believe	me,	 this	will	save	you	a	 lot	of	 time	in	 the
long	 run.	 If	 you’re	 on	 a	 team,	negotiate	with	 them	 to	 agree	on	 a	 consistent
order.

Fixtures	And	Common	Test	Setup
As	 an	 application	 grows	 and	 you	 write	 more	 tests,	 you	 will	 find	 yourself
writing	groups	of	test	methods	that	start	or	end	with	the	same	lines	of	code.
This	repeated	code	-	which	does	some	kind	of	pretest	set-up,	and/or	after-test
cleanup	-	can	be	consolidated	in	the	special	methods	setUp	and	tearDown.

When	 defined	 in	 your	TestCase	 subclass,	setUp	 is	 executed	 just	 before

each	 test	 method	 starts;	tearDown	 is	 run	 just	 after.	 This	 is	 repeated	 for

every	single	test	method.

Here’s	a	 realistic	example	of	when	you	might	use	 it.	 Imagine	working	on	a
tool	that	saves	its	state	between	runs	in	a	special	file,	in	JSON	format.	We’ll
call	 this	 the	 "state	 file".	On	 start,	 it	 reads	 the	 state	 from	 the	 file;	 on	 exit,	 it
rewrites	it,	if	there	are	any	changes.	A	stub	of	this	class	might	look	like

#	statefile.py

class	State:

				def	__init__(self,	state_file_path):

								#	Load	the	stored	state	data,	and	save

								#	it	in	self.data.

272

▪

▪

▪

								self.data	=	{	}

				def	close(self):

								#	Handle	any	changes	on	application	exit.

In	fleshing	out	this	stub,	we	want	our	tests	to	verify	the	following:

If	I	add	a	new	key-value	pair	to	the	state,	it	is	recorded	correctly	in	the	state
file.

If	 I	alter	 the	value	of	an	existing	key,	 that	updated	value	 is	written	 to	 the
state	file.

If	the	state	is	not	changed,	the	state	file’s	content	stays	the	same.

For	 each	 test,	 we	 want	 the	 state	 file	 to	 be	 in	 a	 known	 starting	 state.
Afterwards,	we	want	to	remove	that	file,	so	our	tests	don’t	leave	garbage	files
on	 the	 filesystem.	 Here’s	 how	 the	setUp	 and	tearDown	 methods

accomplish	this:

import	os

import	unittest

import	shutil

import	tempfile

from	statefile	import	State

INITIAL_STATE	=	'{"foo":	42,	"bar":	17}'

class	TestState(unittest.TestCase):

				def	setUp(self):

								self.testdir	=	tempfile.mkdtemp()

273

								self.state_file_path	=	os.path.join(

												self.testdir,	'statefile.json')

								with	open(self.state_file_path,	'w')	as	outfile:

												outfile.write(INITIAL_STATE)

								self.state	=	State(self.state_file_path)

				def	tearDown(self):

								shutil.rmtree(self.testdir)

				def	test_change_value(self):

								self.state.data["foo"]	=	21

								self.state.close()

								reloaded_statefile	=	State(self.state_file_path)

								self.assertEqual(21,

												reloaded_statefile.data["foo"])

				def	test_remove_value(self):

								del	self.state.data["bar"]

								self.state.close()

								reloaded_statefile	=	State(self.state_file_path)

								self.assertNotIn("bar",	reloaded_statefile.data)

				def	test_no_change(self):

								self.state.close()

								with	open(self.state_file_path)	as	handle:

												checked_content	=	handle.read()

								self.assertEqual(checked_content,	INITIAL_STATE)

In	setUp,	we	create	 a	 fresh	 temporary	directory,	 and	write	 the	 contents	of

INITIAL_DATA	 inside.	 Since	 we	 know	 each	 test	 will	 be	 working	 with	 a

State	object	based	on	that	initial	data,	we	go	ahead	and	create	that	object,

274

and	 save	 it	 in	self.state.	 Each	 test	 can	 then	 work	 with	 that	 object,

confident	 it	 is	 in	 the	 same	 consistent	 starting	 state,	 regardless	 of	 what	 any
other	 test	method	does.	 In	effect,	setUp	creates	a	private	sandbox	for	each

test	method.

The	 tests	 in	TestState	would	all	work	 reliably	with	 just	setUp.	But	we

also	 want	 to	 clean	 up	 the	 temporary	 files	 we	 created;	 otherwise,	 they	 will
accumulate	 over	 time	with	 repeated	 test	 runs.	 The	tearDown	method	will

run	after	each	test_*	method	completes,	even	if	some	of	its	assertions	fail.

This	ensures	the	temp	files	and	directories	are	all	removed	completely.

The	generic	term	for	this	kind	of	pre-test	preparation	is	called	a	test	fixture.	A
test	fixture	is	whatever	needs	to	be	done	before	a	test	can	properly	run.	In	this
case,	 we	 set	 up	 the	 text	 fixture	 by	 creating	 the	 state	 file,	 and	 the	State

object.	A	text	fixture	can	be	a	mock	database;	a	set	of	files	in	a	known	state;
some	kind	of	network	connection;	or	even	starting	a	server	process.	You	can
do	all	these	with	setUp.

tearDown	 is	 for	 shutting	 down	 and	 cleaning	 up	 the	 text	 fixture:	 deleting

files,	 stopping	 the	 server	 process,	 etc.	For	 some	kinds	 of	 tests,	 a	 tear-down
might	not	be	at	all	optional.	If	setUp	starts	some	kind	of	server	process,	for

example,	and	tearDown	fails	to	terminate	it,	then	setUp	may	not	be	able	to

run	for	the	next	test.

275

The	 camel-casing	 matters:	 people	 sometimes	 misspell	 them	 as	setup	 or

teardown,	 then	 wonder	 why	 they	 don’t	 seem	 to	 be	 invoked.	 Also,	 any

uncaught	exception	in	either	setUp	or	tearDown	will	cause	unittest	to

mark	 the	 test	method	as	 failing	 (which	means	 it	will	clearly	show	up	 in	 the
test	output),	then	immediately	skip	to	the	next	test.	For	errors	in	setUp,	this

means	 none	 of	 that	 test’s	 assertions	 will	 run	 (though	 it’s	 still	 marked	 as
failing).	 For	tearDown,	 the	 test	 is	 marked	 as	 failing,	 even	 if	 all	 the

individual	assertions	passed.

Asserting	Exceptions
Sometimes	 your	 code	 is	 supposed	 to	 raise	 an	 exception,	 under	 certain
exceptional	conditions.	If	that	condition	occurs,	and	your	code	does	not	raise
the	 correct	 exception,	 that’s	 a	 bug.	 How	 do	 you	 write	 test	 code	 for	 this
situation?

You	 can	 verify	 that	 behavior	 with	 a	 special	 method	 of	TestCase,	 called

assertRaises.	It’s	used	in	a	with	statement	in	your	test;	the	block	under

the	with	statement	is	asserted	to	raise	the	exception.	For	example,	suppose

you	 are	writing	 a	 library	 that	 translates	Roman	numerals	 into	 integers.	You
might	define	a	function	called	roman2int:

>>>	roman2int("XVI")

16

>>>	roman2int("II")

276

2

In	thinking	about	the	best	way	to	design	this	function,	you	decide	that	passing
nonsensical	input	to	roman2int	should	raise	a	ValueError.	Here’s	how

you	write	a	test	to	assert	that	behavior:

import	unittest

from	roman	import	roman2int

class	TestRoman(unittest.TestCase):

				def	test_roman2int_error(self):

								with	self.assertRaises(ValueError):

												roman2int("This	is	not	a	valid	roman	

numeral.")

If	 you	 run	 this	 test,	 and	roman2int	 does	NOT	 raise	 the	 error,	 this	 is	 the

result:

$	python3	-m	unittest	test_roman2int.py

F

==

FAIL:	test_roman2int_error	(test_roman2int.TestRoman)

--

Traceback	(most	recent	call	last):

		File	"/src/test_roman2int.py",	line	7,	in	

test_roman2int_error

				roman2int("This	is	not	a	valid	roman	numeral.")

AssertionError:	ValueError	not	raised

--

277

Ran	1	test	in	0.000s

FAILED	(failures=1)

When	you	fix	the	bug,	and	roman2int	 raises	ValueError	like	it	should,

the	test	passes.

Using	Subtests
Python	 3	 has	 a	 new	 feature	 called	 subtests,	 allowing	 you	 to	 conveniently
iterate	 through	 a	 collection	 of	 test	 inputs.	 Imagine	 a	 function	 called
numwords,	which	counts	 the	number	of	unique	words	in	a	string	(ignoring

punctuation,	spelling	and	spaces):

>>>	numwords("Good,	good	morning.	Beautiful	morning!")

3

Suppose	 you	want	 to	 test	 how	numwords	 handles	 excess	whitespace.	You

can	easily	 imagine	a	dozen	different	 reasonable	 inputs	 that	will	 result	 in	 the
same	return	value,	and	want	to	verify	it	can	handle	them	all.	You	might	create
something	like	this:

class	TestWords(unittest.TestCase):

				def	test_whitespace(self):

								self.assertEqual(2,	numwords("foo	bar"))

								self.assertEqual(2,	numwords("				foo	bar"))

								self.assertEqual(2,	numwords("foo\tbar"))

278

								self.assertEqual(2,	numwords("foo			bar"))

								self.assertEqual(2,	numwords("foo	bar				\t			

\t"))

								#	And	so	on,	and	so	on...

Seems	a	bit	repetitive,	doesn’t	it?	The	only	thing	varying	is	the	argument	to
numwords.	We	might	benefit	from	using	a	for	loop:

				def	test_whitespace_forloop(self):

								texts	=	[

												"foo	bar",

												"				foo	bar",

												"foo\tbar",

												"foo			bar",

												"foo	bar				\t			\t",

]

								for	text	in	texts:

												self.assertEqual(2,	numwords(text))

At	 first	 glance,	 this	 is	 certainly	more	maintainable.	 If	we	 add	new	variants,
it’s	 just	another	 line	 in	 the	texts	 list.	And	 if	 I	 rename	numwords,	 I	only

need	to	change	it	in	one	place	in	the	test.

However,	 using	 a	 for	 loop	 like	 this	 creates	 more	 problems	 than	 it	 solves.
Suppose	you	run	this	test,	and	get	the	following	failure:

$	python3	-m	unittest	test_words_forloop.py

F

==

279

FAIL:	test_whitespace_forloop	

(test_words_forloop.TestWords)

--

Traceback	(most	recent	call	last):

		File	"/src/test_words_forloop.py",	line	17,	in	

test_whitespace_forloop

				self.assertEqual(2,	numwords(text))

AssertionError:	2	!=	3

--

Ran	1	test	in	0.000s

FAILED	(failures=1)

Look	 closely,	 and	 you’ll	 realize	 that	numwords	 returned	 3	 when	 it	 was

supposed	to	return	2.	Pop	quiz:	out	of	all	the	inputs	in	the	list,	which	caused
the	bad	return	value?

The	way	we’ve	written	the	test,	there	is	no	way	to	know.	All	you	can	infer	is
that	 at	 least	 one	 of	 the	 test	 inputs	 produced	 an	 incorrect	 value.	 You	 don’t
know	which	one.	That’s	 the	 first	 problem.	The	 second	 is	 that	 the	 test	 stops
when	 the	 first	 failure	 happens.	 If	 several	 test	 inputs	 are	 causing	 errors,	 it
would	be	helpful	to	know	that	right	away.	(Of	course,	the	original	version	has
this	shortcoming	too.)	Knowing	all	the	failing	inputs,	and	the	incorrect	results
they	create,	would	be	very	helpful	for	quickly	understanding	what’s	going	on.

Python	3.4	introduced	a	new	feature,	called	subtests,	that	gives	you	the	best	of
all	worlds.	Our	for-loop	solution	is	actually	quite	close.	All	we	have	to	do	is

280

add	one	line	-	can	you	spot	it	below?

				def	test_whitespace_subtest(self):

								texts	=	[

												"foo	bar",

												"				foo	bar",

												"foo\tbar",

												"foo			bar",

												"foo	bar				\t			\t",

]

								for	text	in	texts:

												with	self.subTest(text=text):

																self.assertEqual(2,	numwords(text))

Just	 inside	 the	 for	 loop,	we	write	with	self.subTest(text=text).

This	 creates	 a	 context	 in	 which	 assertions	 can	 be	 made,	 and	 even	 fail.
Regardless	 of	 whether	 they	 pass	 or	 not,	 the	 test	 continues	 with	 the	 next
iteration	of	the	for	loop.	At	the	end,	all	failures	are	collected	and	reported	in
the	test	result	output,	like	this:

$	python3	-m	unittest	test_words_subtest.py

==

FAIL:	test_whitespace_subtest	

(test_words_subtest.TestWords)	(text='foo\tbar')

--

Traceback	(most	recent	call	last):

		File	"/src/test_words_subtest.py",	line	16,	in	

test_whitespace_subtest

				self.assertEqual(2,	numwords(text))

281

▪

▪

▪

▪

AssertionError:	2	!=	3

==

FAIL:	test_whitespace_subtest	

(test_words_subtest.TestWords)	(text='foo	bar				\t			\t')

--

Traceback	(most	recent	call	last):

		File	"/src/test_words_subtest.py",	line	16,	in	

test_whitespace_subtest

				self.assertEqual(2,	numwords(text))

AssertionError:	2	!=	4

--

Ran	1	test	in	0.000s

FAILED	(failures=2)

Behold	the	opulence	of	information	in	this	output:

Each	individual	failing	input	has	its	own	detailed	summary.

We	are	told	what	the	full	value	of	text	was.

We	 are	 told	what	 the	 actual	 returned	 value	was,	 clearly	 compared	 to	 the
expected	value.

No	 values	 are	 skipped.	We	 can	 be	 confident	 that	 these	 two	 are	 the	only
failures.

This	is	MUCH	better.	The	two	offending	inputs	are	"foo\tbar"	and	"foo

bar	\t	\t".	These	are	 the	only	values	containing	 tab	characters,	 so	you

282

can	quickly	realize	the	nature	of	the	bug:	tab	characters	are	being	counted	as
separate	words.

Let’s	look	at	the	three	key	lines	of	code	again:

								for	text	in	texts:

												with	self.subTest(text=text):

																self.assertEqual(2,	numwords(text))

The	 key-value	 arguments	 to	self.subTest	 are	 used	 in	 reporting	 the

output.	They	can	be	anything	that	helps	you	understand	exactly	what	is	wrong
when	a	test	fails.	Often	you	will	want	to	pass	everything	that	varies	from	the
test	cases;	here,	that’s	only	the	string	passed	to	numwords.

Be	clear	that	 in	these	three	lines,	 the	symbol	text	 is	used	for	 two	different

things.	The	text	variable	in	the	for	loop	is	the	same	variable	that	is	passed	to

numwords	 on	 the	 last	 line.	 In	 the	 call	 to	subTest,	 the	 left-hand	 side	 of

text=text	is	actually	a	parameter	that	is	used	in	the	reporting	output	if	the

test	fails.	For	example,	suppose	we	wrote	it	as	input_text	instead:

								for	text	in	texts:

												with	self.subTest(input_text=text):

																self.assertEqual(2,	numwords(text))

Then	the	failure	output	might	look	like:

283

FAIL:	test_whitespace_subtest	

(test_words_subtest.TestWords)	(input_text='foo\tbar')

In	other	words,	 the	 l-value	text	 in	 the	assertEqual	 line	has	nothing	 to

do	 with	 the	 argument	 to	subTest.	 Just	 remember	 that	 the	 arguments	 to

subTest	are	only	used	in	the	error	output	when	something	goes	wrong,	and

are	otherwise	ignored	completely.

Final	Thoughts
Let’s	recap	 the	big	 ideas.	Test-driven	development	means	we	create	 the	 test
first,	 and	whatever	 stubs	we	need	 to	make	 the	 test	 run.	We	 then	 run	 it,	 and
watch	it	fail.	This	is	an	important	step.	You	must	run	the	test	and	see	it	fail.

This	is	important	for	two	reasons.	You	don’t	really	know	if	the	test	is	correct
until	you	verify	that	it	can	fail.	As	you	write	automated	tests	more	and	more
over	 time,	 you	 will	 probably	 be	 surprised	 at	 how	 often	 you	 write	 a	 test,
confident	in	its	correctness,	only	to	discover	it	passes	when	it	should	fail.	As
far	 as	 I	 can	 tell,	 every	 good,	 experienced	 software	 engineer	 I	 know	 still
commonly	experiences	this…		even	after	doing	TDD	for	many	years!	This	is
why	we	build	the	habit	of	always	verifying	the	test	fails	first.

The	 second	 reason	 is	 more	 subtle.	 As	 you	 gain	 experience	 with	 TDD	 and
become	 comfortable	 with	 it,	 you	 will	 find	 the	 cycle	 of	 writing	 tests	 and

284

making	 them	 pass	 lets	 you	 get	 into	 a	 state	 of	 flow.	 This	 means	 you	 are
enjoyably	productive	and	focused,	in	a	way	that	is	easy	to	maintain	over	time.

Is	it	important	that	you	strictly	follow	test-driven	development?	People	have
different	 opinions	 on	 this,	 some	 of	 them	very	 strong.	 Personally,	 I	 went
through	a	period	of	 almost	 a	year	where	 I	 followed	TDD	 to	 the	 letter,	very
strictly.	As	a	result,	I	got	very	good	at	writing	tests,	and	writing	high-quality
tests	very	quickly.

Now	that	I’ve	developed	that	level	of	skill,	I	prefer	instead	to	follow	the	80-
20	rule,	and	sometimes	the	70-30	or	even	50-50	rule.	I	have	noticed	that	TDD
is	 most	 powerful	 when	 I	 have	 great	 clarity	 on	 the	 software’s	 design,
architecture	 and	 APIs;	 it	 helps	 me	 get	 into	 an	 cognitive	 state	 that	 seems
accelerated,	so	that	I	can	more	easily	maintain	my	mental	focus,	and	produce
quality	code	faster.

But	I	find	it	very	hard	to	write	good	tests	when	I	don’t	yet	have	that	clarity…	
when	 I	 am	 still	 thinking	 through	 how	 I	 will	 structure	 the	 program	 and
organize	 the	code.	In	fact,	 I	 find	TDD	slows	me	down	in	 that	phase,	as	any
test	I	write	will	probably	have	to	be	completely	rewritten	several	times,	if	not
deleted,	 before	 things	 stabilize.	 In	 these	 situations,	 I	 prefer	 to	 get	 a	 first
version	 of	 the	 code	 working	 through	 manual	 testing,	 then	 write	 the	 tests
afterwards.

285

To	close	with	the	obvious:	Experiment	to	find	what	approach	works	best	for
you,	 and	 not	 just	 follow	what	 someone	 else	writes	 that	 you	 "should"	 do.	 I
encourage	you	to	try	TDD	for	a	period	of	time,	because	of	what	it	will	teach
you.	But	be	flexible,	and	at	some	point	step	back	and	evaluate	how	you	want
to	integrate	it	into	your	daily	routine. �

286

1	https://docs.python.org/3/library/unittest.html

2	You	may	be	in	a	third	category,	having	a	lot	of	experience	with	a	non-xUnit	testing	framework.
If	so,	you	should	probably	pretend	you’re	in	the	first	group.	You’ll	be	able	to	move	quickly.

3	If	you	haven’t	done	one	of	these	yet,	you	will.

4	The	object-oriented	chapter	talks	about	"magic	methods"	like	__add__,	which	provide	a	more

natural	syntax	for	math-like	operations	on	custom	types.	This	chapter	just	uses	regular	methods,
in	case	you	haven’t	read	that	chapter	yet.

5	Python	2	 requires	you	 to	drop	 the	 test	 file’s	.py	extension	-	 in	other	words,	passing	 the	 test

module	name.	So	you	invoke	it	like	python2.7	-m	unittest	test_angles.	Python	3

lets	you	do	either;	we’ll	always	use	the	test	filename	in	this	chapter,	but	you	can	use	whichever
you	prefer.

6	 If	you	find	yourself	wanting	 to	 run	 tests	 in	a	certain	order,	 this	might	be	better	handled	with
setUp	and	tearDown,	explained	in	the	next	section.

7	Which	could	be	you,	months	or	years	down	the	road.	Be	considerate	of	your	future	self!

287

https://docs.python.org/3/library/unittest.html

STRING	FORMATTING

The	situation	with	string	formatting	is	complicated.

Once	 upon	 a	 time,	 Python	 introduced	percent	 formatting.	 It	 uses	"%"	 as	 a

binary	operator	to	render	strings:

>>>	drink	=	"coffee"

>>>	price	=	2.5

>>>	message	=	"This	%s	costs	$%.2f."	%	(drink,	price)

>>>	print(message)

This	coffee	costs	$2.50.

Later	 in	 Python	 2’s	 history,	 a	 different	 style	was	 introduced,	 called	 simply
string	 formatting	 (yes,	 that’s	 the	 official	 name).	 Its	 very	 different	 syntax
makes	 any	 Python	 string	 a	 potential	 template,	 inserting	 values	 through	 the
str.format()	method.

>>>	template	=	"This	{}	costs	${:.2f}."

>>>	print(template.format(drink,	price))

This	coffee	costs	$2.50.

288

▪

▪

▪

▪

▪

Python	 3.6	 introduces	 a	 third	 option,	 called	f-strings.	 This	 lets	 you	 write
literal	 strings,	 prefixed	 with	 an	 "f"	 character,	 interpolating	 values	 from	 the
immediate	context:

>>>	message	=	f"This	{drink}	costs	${price:.02f}."

>>>	print(message)

This	coffee	costs	$2.50.

So…		which	do	you	use?	Here’s	my	guidance	in	a	nutshell:

Go	 ahead	 and	 master	str.format()	 now.	 Everything	 you	 learn

transfers	 entirely	 to	 f-strings,	 and	 you’ll	 sometimes	 want	 to	 use
str.format()	even	in	cutting-edge	versions	of	Python.

Prefer	f-strings	when	working	in	a	codebase	that	supports	it	-	meaning,	all
developers	and	end-users	of	the	code	base	are	certain	to	have	Python	3.6	or
later.

Until	then,	prefer	str.format().

Exception:	 for	 the	logging	 module,	 use	 percent-formatting,	 even	 if

you’re	otherwise	using	f-strings.

Aside	from	logging,	don’t	use	percent-formatting	unless	legacy	reasons

force	you	to.

"Which	 should	 I	 use?"	 is	 a	 separate	 question	 from	 "which	 should	 a	Python
book	 use	 for	 its	 code	 examples?"	 As	 you’ve	 noticed,	 I	 am	 using

289

str.format()	 throughout	 this	 book.	 That’s	 because	 all	 modern	 Python

versions	support	it,	so	I	know	everyone	reading	this	book	can	use	it.

Someday,	when	Python	versions	before	3.6	are	a	distant	memory,	 there	will
be	no	 reason	not	 to	use	 f-strings.	But	when	 that	 happens,	str.format()

will	 still	be	 important.	There	are	string	 formatting	situations	where	 f-strings
are	 awkward	 at	 best,	 and	str.format()	 is	well	 suited.	 In	 the	meantime,

there	is	a	lot	of	Python	code	out	there	using	str.format(),	which	you’ll

need	 to	 be	 able	 to	 read	 and	 understand.	 Hence,	 I’m	 choosing	 to	 focus	 on
str.format()	 in	 this	 chapter.	Conveniently,	 this	 also	 teaches	you	much

about	 f-strings;	 they	are	more	 similar	 than	different,	 because	 the	 formatting
codes	are	nearly	identical.	str.format()	is	also	the	only	practical	choice

for	most	people	reading	this,	and	will	be	for	years	still.

You	 might	 wonder	 if	 the	 old	 percent-formatting	 has	 any	 place	 in	 modern
Python.	 In	 fact,	 it	 does,	 due	 to	 the	logging	module.	As	you’ll	 read	 in	 its

chapter,	 this	 important	module	 is	built	on	percent-formatting	 in	a	deep	way.
It’s	 possible	 to	 use	str.format()	 in	 new	 logging	 code,	 but	 requires

special	 steps;	 and	 legacy	 logging	 code	 cannot	 be	 safely	 converted	 in	 an
automated	way.	 I	 recommend	you	 just	cooperate	with	 the	situation,	and	use
percent-formatting	for	your	log	messages.

For	 those	 interested,	 this	 chapter	 ends	 with	 sections	 briefly	 explaining	 f-
strings	 and	 percent-formatting.	 For	 now,	 we’ll	 focus	 on	str.format().

290

While	 reading,	 I	 highly	 recommend	 you	 have	 a	 Python	 interpreter	 prompt
open,	 typing	 in	 the	 examples	 as	 you	 go	 along.	The	 goal	 is	 to	 make	 its
expressive	 power	 automatic	 and	 easy	 for	 you	 to	 use,	 so	 that	 it’s	mentally
available	to	you…		giving	you	the	easy	ability	to	use	it	in	the	future,	without
digging	into	the	reference	docs.	Most	people	never	master	it	to	this	threshold,
effectively	 denying	 them	most	 of	 the	 benefits	 of	 this	 rich	 tool.	 You	 won’t
have	that	problem.

Replacing	Fields
str.format()	 lets	you	start	simple,	leveraging	more	complex	extensions

as	needed.	You	start	by	creating	a	format	string.	This	is	just	a	regular	string,
and	 acts	 as	 a	 kind	 of	 template.	 It	 contains,	 among	 other	 text,	 one	 or	more
replacement	 fields.	 These	 are	 simply	 pairs	 of	 opening	 and	 closing	 curly
braces:	"Good	{},	my	friend".	You	then	invoke	the	format	method

on	that	string,	passing	in	one	argument	for	each	replacement	field:

>>>	"Good	{},	my	friend".format("morning")

'Good	morning,	my	friend'

>>>	"Good	{},	my	friend".format("afternoon")

'Good	afternoon,	my	friend'

>>>	offer	=	"Give	me	{}	dollars	and	I'll	give	you	a	{}."

>>>	offer.format(2,	"cheeseburger")

"Give	me	2	dollars	and	I'll	give	you	a	cheeseburger."

>>>	offer.format(7,	"nice	shoulder	rub")

"Give	me	7	dollars	and	I'll	give	you	a	nice	shoulder	rub."

291

(If	 possible,	 type	 these	 examples	 in	 an	 interpreter	 as	 you	 go	 along,	 so	 you
learn	 them	 deeply.)	.format()	 is	 a	 method	 returning	 a	 new	 string;	 the

format	string	itself	is	not	modified.

Notice	how	fields	line	up	by	position,	and	no	type	information	is	needed.	The
integer	2	and	 the	string	"cheeseburger"	are	both	 inserted	without	complaint.
We’ll	see	how	to	specify	more	precise	types	for	the	fields	later.

Within	 the	 curly	 braces	 of	 the	 replacement	 field,	 you	 can	 specify	 numbers
starting	 at	 0.	 These	 reference	 the	 positions	 of	 the	 arguments	 passed	 to
format,	and	allow	you	to	repeat	fields:

>>>	"{0}	is	{1};	{1},	{0}".format("truth",	"beauty")

'truth	is	beauty;	beauty,	truth'

You	can	also	reference	fields	by	a	name,	and	pass	the	fields	as	key-value	pairs
to	format:

>>>	"Good	{when},	{user}!".format(

									when="morning",	user="John")

'Good	morning,	John!'

The	 arguments	 to	format()	don’t	actually	have	 to	be	strings:	 they	can	be

objects	 or	 lists.	 Reference	 within	 them	 as	 you	 normally	 would,	 within	 the
curly	braces:

292

>>>	class	Point:

...					def	__init__(self,	x,	y):

...									self.x	=	x

...									self.y	=	y

...

>>>	point	=	Point(3,	7)

>>>	'The	coordinates	are	{point.x},	{point.y}'.format(

								point=point)

'The	coordinates	are	3,	7'

>>>	'The	coordinates	are	{0.x},	{0.y}'.format(point)

'The	coordinates	are	3,	7'

Notice	 the	difference	 in	how	you	use	 the	point	with	a	named	field	 (the	first
format	call),	versus	a	numbered	field	(the	second).	Here’s	how	it	looks	with	a
list:

>>>	params	=	["morning",	"user"]

>>>	"Good	{params[0]},	{params[1]}!".format(params=params)

'Good	morning,	user!'

>>>	"Good	{0[0]},	{0[1]}!".format(params)

'Good	morning,	user!'

You	can	do	 the	same	 thing	with	dictionaries	 too,	 though	 there	 is	one	subtle
quirk	-	can	you	spot	it?

>>>	params	=	{"when":	"morning",	"user":"John"}

>>>	"Good	{0[when]},	{0[user]}!".format(params)

'Good	morning,	John!'

293

See	it?	The	key	when	in	{0[when]}	does	not	have	quotation	marks	around

it!	In	fact,	if	you	do	put	them	in,	you	get	an	error.	This	quirk	was	intentionally
put	in,	to	make	it	easier	to	reference	keys	within	a	string	that	is	bounded	by
quotes	already.

Number	Formats	(and	"Format	Specs")
Now	that	you	know	how	to	substitute	values	into	different	replacement	fields
(i.e.,	pairs	of	curly	braces),	you	may	next	want	to	format	a	field	as	a	number.
Do	 this	 by	 inserting	 a	 colon	 between	 the	 curly	 braces,	 followed	 by	 one	 or
more	 descriptive	 characters.	 For	 example,	 use	 ":d"	 to	 format	 as	 an	 integer,
and	":f"	to	format	as	a	floating-point	number.	Here’s	how	it	works:

>>>	'The	magic	number	is	{:d}'.format(42)

'The	magic	number	is	42'

>>>	'The	magic	number	is	actually	{:f}'.format(42)

'The	magic	number	is	actually	42.000000'

>>>	'But	this	will	cause	an	error:	{:d}'.format("foo")

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

ValueError:	Unknown	format	code	'd'	for	object	of	type	

'str'

The	 number	 42	 is	 rendered	 as	 either	42	 or	42.000000,	 depending	 on

whether	 the	 replacement	 field	 is	{:d}	 or	{:f}.	And	when	we	 try	 to	 stuff

something	that	isn’t	a	number	in	{:d},	it	triggers	a	fatal	error.

294

You	can	combine	 this	with	 field	numbering	 and	naming.	 Just	 put	 that	 label
before	the	colon:

>>>	"The	time	is	{hour:d}	o'	clock.".format(hour=11)

"The	time	is	11	o'	clock."

>>>	"The	answer	is	{0:f},	not	{1:f}.	But	you	can	round	it	

to	{0:d}.".format(12,	14)

'The	answer	is	12.000000,	not	14.000000.	But	you	can	round	

it	to	12.'

The	rule	is	easy:	if	you	label	a	field	-	whether	it’s	a	string	name,	or	a	number	-
always	put	that	label	first	within	the	curly	brackets.

The	part	after	after	 the	colon	 is	called	a	format	spec.	There’s	actually	many
options	you	can	stuff	 in	 there,	but	 let’s	 focus	on	 those	 related	 to	 formatting
numbers	 first.	 As	 you	 saw,	 the	 code	 for	 an	 integer	 is	d,	 converting	 the

argument	to	an	integer,	if	possible.	If	not,	it	throws	a	ValueError.	(By	the

way,	"d"	stands	for	"decimal	number",	as	in	a	base-ten	number.)

Then	 there’s	 floating	 point	 numbers.	 With	 the	f	 code,	 we	 get	 six	 decimal

places	of	precision	by	default	-	which	are	filled	with	zeros	if	necessary:

>>>	from	math	import	pi

>>>	'The	ratio	is	about	{:f}'.format(pi)

'The	ratio	is	about	3.141593'

>>>	'{:f}	is	NOT	a	good	approximation.'.format(3)

'3.000000	is	NOT	a	good	approximation.'

295

"f"	actually	stands	for	"fixed-point	number",	not	"floating	point"	 -	we’ll	see
some	variations	 later.	We	can	 change	 the	number	of	 fixed	points:	writing	 a
period	followed	by	a	number	means	to	use	that	many	decimal	places.	We	put
it	between	the	colon	and	the	letter	"f",	like	so:

>>>	'The	ratio	is	about	{:.3f}'.format(pi)

'The	ratio	is	about	3.142'

>>>	'{:.1f}	is	NOT	a	good	approximation.'.format(3)

'3.0	is	NOT	a	good	approximation.'

It’s	easier	for	humans	to	read	numbers	with	many	digits	if	they	have	commas.
You	can	tell	the	formatter	to	do	this	by	putting	a	comma	after	the	colon:

>>>	"Billions	and	{:,d}'s".format(10**9)

"Billions	and	1,000,000,000's"

>>>	"It	works	with	floating	point	too:	

{:,f}".format(10**9)

'It	works	with	floating	point	too:	1,000,000,000.000000'

For	 large	 numbers,	 sometimes	 we	 want	 scientific	 notation,	 also	 called
exponent	notation.	We	can	use	the	code	"E"	for	that	instead:

>>>	"Billions	and	{:E}'s".format(10**9)

"Billions	and	1.000000E+09's"

>>>	"Precision	works	the	same:	{:.2E}".format(10**9)

'Precision	works	the	same:	1.00E+09'

296

So	 far,	 we	 have	 seen	 codes	 for	 three	 presentation	 types:	 d	 (decimal)	 for
integers;	 and	 f	 (fixed-point)	and	E	 (exponential)	 for	 floating-point	numbers.
We	actually	have	many	other	choices	for	both:	read	the	format-specification
mini-language	section	[1]	in	the	Python	docs.

Width,	Alignment,	and	Fill
In	the	examples	above,	the	substituted	values	will	take	only	as	much	space	as
they	need,	but	no	more.	So	"a{}b".format(n)	will	render	as	a7b	if	n	is

7	-	but	not	a07b,	for	example.	But	if	n	is	77,	it	will	expand	to	take	up	four

characters	instead	of	three:	a77b.

We	can	change	this	default	behavior,	placing	the	value	in	a	field	of	a	certain
number	 of	 characters.	 If	 it’s	 small	 enough	 to	 fit	 in	 there	 (i.e.	 not	 too	many
digits	or	chars),	then	it	will	be	right-justified.	We	specify	the	width	by	putting
the	number	of	characters	between	the	colon	and	the	type	code:

>>>	"foo{:7d}bar".format(753)

'foo				753bar'

Let’s	count	the	character	columns	here:

foo				753bar

0123456789012

297

Positions	3	through	9	are	taken	up	by	the	replacement	field	value.	That	value
only	has	three	characters	(753),	so	the	others	are	filled	by	the	space	character.
We	say	that	the	space	is	the	fill	character	here.

By	default,	the	value	is	right-justified	in	the	field	for	numbers.	But	for	strings,
it’s	left	justified:

>>>	"foo{:7s}bar".format("blah")

'fooblah			bar'

Generally	speaking,	it	will	default	to	right-justifying	for	any	kind	of	number,
and	left-justify	for	everything	else.	We	can	override	the	default,	or	even	just
be	 explicit	 about	 what	 we	want,	 by	 inserting	 an	alignment	 right	 before	 the
field	width.	For	right-justifying,	this	is	the	greater-than	sign:

>>>	"foo{:>7d}bar".format(753)

'foo				753bar'

>>>	"foo{:>7s}bar".format("blah")

'foo			blahbar'

To	left-justify,	use	a	less-than	sign:

>>>	"foo{:<7d}bar".format(753)

'foo753				bar'

>>>	"foo{:<7s}bar".format("blah")

'fooblah			bar'

Or	we	can	center	it,	with	a	caret:

298

>>>	"foo{:^7d}bar".format(753)

'foo		753		bar'

>>>	"foo{:^7s}bar".format("blah")

'foo	blah		bar'

So	far,	the	extra	characters	in	the	field	have	been	spaces.	That	extra	character
is	called	the	fill	character,	or	the	fill.	We	can	specify	a	different	fill	character
by	placing	it	just	before	the	alignment	character	(<,	>	or	^):

>>>	"foo{:_>7d}bar".format(753)

'foo____753bar'

>>>	"foo{:+<7d}bar".format(753)

'foo753++++bar'

>>>	"foo{:X^7d}bar".format(753)

'fooXX753XXbar'

This	is	a	good	time	to	remember	you	can	combine	field	names	or	indices	with
these	 format	 annotations	 -	 just	put	 the	name	or	 index	 to	 the	 left	 side	of	 the
colon:

>>>	"alpha{x:_<6d}beta{y:+^7d}gamma".format(x=42,	y=17)

'alpha42____beta++17+++gamma'

>>>	"{0:_>6d}{1:-^7d}{0:_<6d}".format(11,	333)

'____11--333--11____'

Historically,	 over	 the	 long	 and	 ongoing	 lifetime	 of	printf,	 it’s	 been

common	to	use	zero	as	a	fill	character	for	right-justified	integer	fields.	So	if
the	number	42	 is	put	 in	a	 five-character-wide	 field,	 it	 shows	up	at	 "00042".

299

Since	 people	 often	want	 to	 do	 this,	 a	 shorthand	 evolved.	You	 can	 omit	 the
alignment	character	if	the	fill	is	"0"	(zero),	and	the	type	is	decimal:

>>>	"foo{:0>7d}bar".format(753)

'foo0000753bar'

>>>	"foo{:07d}bar".format(753)

'foo0000753bar'

That	doesn’t	generally	work	for	other	fill	values,	though:

>>>	"foo{:_7d}bar".format(753)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

ValueError:	Invalid	format	specifier

What	happens	if	the	value	is	too	big	to	fit	in	a	tiny	field?	The	width	is	actually
a	minimum	width.	So	it	will	expand	as	needed	to	fill	it	out:

>>>	"red{:4d}green".format(123456789)

'red123456789green'

There	isn’t	any	way	to	specify	a	maximum	width.	If	you	need	that,	you	can
convert	 it	 to	 a	 string,	 implement	 your	 own	 trimming	 logic,	 then	 inject	 that
trimmed	string:

>>>	value	=	123456789	#	Or	some	other	number.

>>>	trimmed_value	=	str(value)[:4]	#	Or	last	4,	etc.

>>>	"red{:>4s}green".format(trimmed_value)

'red1234green'

300

F-Strings
Python	 3.6	 introduced	 an	 alternative	 to	str.format(),	 called	f-strings.

The	 formal	 name	 is	 "formatted	 string	 literal".	 Instead	 of	 a	.format()

method,	 you	 prefix	 the	 string	 with	 the	 letters	 "f"	 or	 "F",	 putting	 variable
names	directly	inside	the	replacement	field:

>>>	time_of_day	=	"afternoon"

>>>	f"Good	{time_of_day},	my	friend"

'Good	afternoon,	my	friend'

>>>	F"Good	{time_of_day},	my	friend"

'Good	afternoon,	my	friend'

It’s	exactly	equivalent	to	this:

>>>	#	This...

...	"Good	{time_of_day},	my	friend".format(

...					time_of_day=time_of_day)

'Good	afternoon,	my	friend'

>>>	#	Or	this:

...	"Good	{},	my	friend".format(time_of_day)

'Good	afternoon,	my	friend'

If	your	values	are	already	stored	in	locally-readable	variables,	using	f-strings
is	more	succinct.	But	you	can	do	more	than	that.	In	fact,	the	replacement	field
(i.e.	the	curly	braces)	can	contain	not	only	a	variable	name,	but	a	full	Python
expression!

301

>>>	f"Good	{time_of_day.upper()},	my	friend"

'Good	AFTERNOON,	my	friend'

>>>	def	reverse(string):

...					return	string[::-1]

>>>	f"Good	{reverse(time_of_day)},	my	friend"

'Good	noonretfa,	my	friend'

>>>	groceries	=	["milk",	"bread",	"broccoli"]

>>>	f"I	need	to	get	some	{groceries[2]}."

'I	need	to	get	some	broccoli.'

You	can	do	this	with	str.format(),	too,	but	f-strings	express	it	a	bit	more

naturally.	Aside	from	that,	you	can	use	the	normal	number	formatting	codes.
After	 the	 expression	 name,	 simply	 write	 a	 colon,	 and	 the	 same	 code	 you
would	use	for	str.format():

>>>	from	math	import	pi

>>>	f"The	ratio	is	about	{pi:f}"

'The	ratio	is	about	3.141593'

>>>	f"Which	is	roughly	{pi:0.2f}"

'Which	is	roughly	3.14'

>>>	f"{pi:.0f}	is	NOT	a	good	approximation."

'3	is	NOT	a	good	approximation.'

>>>	number	=	10**9

>>>	f"Billions	and	{number:,d}'s"

"Billions	and	1,000,000,000's"

>>>	f"Billions	and	{number:E}'s"

"Billions	and	1.000000E+09's"

302

As	well	as	the	width,	alignment,	and	fill:

>>>	num	=	753

>>>	word	=	"WOW"

>>>	f"foo{num:7d}bar"

'foo				753bar'

>>>	f"foo{word:7s}bar"

'fooWOW				bar'

>>>	f"foo{word:>7s}bar"

'foo				WOWbar'

>>>	f"foo{num:<7d}bar"

'foo753				bar'

>>>	f"foo{num:^7d}bar"

'foo		753		bar'

>>>	f"foo{num:X^7d}bar"

'fooXX753XXbar'

Now	 it’s	 clear	 why	 I	 emphasize	str.format()	 in	 this	 chapter,	 and	 this

book.	 Practically	 speaking,	 all	 Python	 programmers	 need	 to	 know
str.format()	anyway;	and	once	you’ve	learned	it,	you	are	fluent	with	f-

strings	almost	immediately.

The	main	downside	to	f-strings	will	become	less	important	over	time.	It	only
works	with	Python	3.6	and	later.	That	means	in	order	to	use	f-strings	in	your
code,	you	must	be	working	on	a	codebase	which	will	only	ever	be	executed
on	those	versions.	This	applies	not	only	to	your	fellow	developers,	but	-	more
problematically	 -	 all	 end	 users.	 If	 a	 customer	 has	 installed	Python	 3.5	 on	 a
server,	 and	your	program	uses	 f-strings,	 they	won’t	 be	 able	 to	 run	 it	 unless

303

you	 can	 convince	 them	 to	 upgrade.	Which,	 unfortunately,	 probably	 isn’t	 as
high	a	priority	for	them	as	it	is	for	you.

As	 I	 write	 this,	 f-strings	 have	 been	 out	 a	 short	 while.	 But	 many	 Python
developers	seem	to	have	already	fallen	in	love	with	them.	The	next	edition	of
this	 book	 may	 emphasize	 them	 more,	 depending	 how	 quickly	 the	 Python
community	 moves	 to	 versions	 of	 Python	 which	 support	 f-strings,	 and	 how
popular	 they	 become.	 Fortunately,	 it’s	 quite	 easy	 to	 switch	 back	 and	 forth
between	str.format()	and	f-strings;	there	seems	to	be	very	little	mental

energy	needed	to	switch.	So	if	you	want	to	use	f-strings,	you	can	do	so	when
it’s	practical,	and	then	easily	switch	to	str.format()	when	needed.

Percent	Formatting
Modern	Python	still	needs	percent	 formatting	 in	a	 few	places,	mainly	when
you	work	with	the	logging	module.	Thankfully,	you	don’t	need	to	know	all

its	details.	Learning	just	a	few	parts	of	percent	formatting	will	cover	95%	of
what	 you’re	 likely	 to	 need.	 I’ll	 focus	 on	 that	 high-impact	 portion	 here;	 for
more	detail,	consult	the	official	Python	reference.[2]

Percent	 formatting	 is	 officially	 called	 "printf-style	 string	 formatting",	 and	 -
like	the	string	formatting	in	many	languages	-	has	its	roots	in	C’s	printf().

So	 if	 you	 have	 experience	with	 that,	 you’ll	 skim	 through	 quickly	 -	 though
there	are	a	few	differences.

304

It	uses	the	percent	character	in	two	ways.	Here’s	a	simple	example:

>>>	"Hello,	%s,	today	is	%s."	%	("Aaron",	"Tuesday")

'Hello,	Aaron,	today	is	Tuesday.'

Notice	percent	is	used	as	a	binary	operator.	On	its	left	is	a	string;	on	its	right,
a	tuple	of	two	strings.	That	string	on	the	left	is	called	the	format;	you	can	see
it	 has	 two	 percent	 characters	 inside.	 Specifically,	 it	 has	 the	 sequence	%s

twice.	 These	%s	 sequences	 are	 called	conversion	specifiers.	 There’s	 two	 of

them,	and	two	values	in	the	tuple	on	the	right;	they	map	to	each	other.	Each
value	is	substituted	for	its	corresponding	%s.

The	 "s"	 means	 that	 the	 inserted	 value	 is	 converted	 to	 a	 string;	 these	 are
already	strings,	though,	so	they	are	just	placed	in.	You	can	also	use	%d	for	an

integer:

>>>	"Here's	%d	dollars	and	%d	cents."	%	(14,	25)

"Here's	14	dollars	and	25	cents."

Sometimes	it	doesn’t	matter	much	which	specifier	you	use.	If	that	last	format
string	was	"Here’s	%s	dollars	and	%s	cents.",	it	would	render

the	 same.	But	 I	 recommend	you	choose	 the	 strictest	 type	 that	will	work	 for
your	data;	if	you	expect	the	value	to	be	an	integer,	use	%d,	so	that	if	it’s	not	an

integer,	you’ll	get	a	clear	stack	trace	telling	you	what’s	wrong:

305

>>>	"Here's	%d	dollars	and	%d	cents."	%	(14,	"a	quarter")

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	%d	format:	a	number	is	required,	not	str

(I’m	assuming	you’d	rather	discover	a	lurking	bug	now,	during	development,
instead	of	through	an	angry	customer’s	bug	report	later.)

Sometimes	you’ll	have	just	one	value	to	interject.	A	tuple	of	one	value	must
be	 written	 with	 an	 extra	 comma,	 like	(foo,)	 -	 because	(foo)	 becomes

simply	foo	in	the	normal	meaning	of	parentheses	for	grouping.	So	to	format

a	string	of	one	variable,	you	can	type	this:

>>>	"High	%d!"	%	(5,)

'High	5!'

Early	in	Python’s	history,	people	decided	typing	those	extra	characters	was	a
bit	 annoying,	 especially	 given	 how	 common	 it	 is	 to	 format	 a	 string	with	 a
single	value.	So	as	a	special	case,	when	you	have	a	single	specifier,	you	can
pass	in	a	single	value	instead	of	a	tuple:

>>>	"High	%d!"	%	5

'High	5!'

In	addition	to	%d	and	%s,	you	can	use	%f	for	a	floating-point	number:

306

>>>	"I	owe	you	$%f."	%	7.05

'I	owe	you	$7.050000.'

You’ll	often	want	to	specify	its	precision	-	the	number	of	digits	to	the	right	of
the	decimal.	Do	 this	by	 inserting	a	precision	code	 between	%	 and	f	 -	which

will	be	a	.	(dot)	followed	by	an	integer:

>>>	"I	owe	you	$%.2f."	%	5.05

'I	owe	you	$5.05.'

You	 can	 also	 use	%r	 (which	 formats	 the	repr()	 of	 the	 object).	 It’s

especially	useful	for	logging	and	troubleshooting:

>>>	class	Money:

...					def	__init__(self,	dollars,	cents):

...									self.dollars	=	dollars

...									self.cents	=	cents

...					def	__repr__(self):

...									return	'Money({},{})'.format(

...													self.dollars,	self.cents)

>>>	cash	=	Money(127,	82)

>>>	"Cash	on	hand:	%r"	%	cash

'Cash	on	hand:	Money(127,82)'

There	is	much	more	to	percent	formatting	than	this,	but	what	we’ve	covered
lets	you	read	and	write	most	of	what	you	need.

307

Now,	 as	 mentioned,	 in	 modern	 Python	 you’ll	 mainly	 need	 to	 use	 percent
formatting	with	the	logging	module.	However,	in	that	case,	you	use	it	a	bit

differently.	 As	 described	 in	 its	 chapter,	 the	logging	 module	 includes

functions	 for	 log	 events	 at	 different	 levels	 of	 urgency	 -	 whether	 that’s	 an
error,	a	warning,	or	even	a	non-urgent	informational	message:

logging.info("So	far,	so	good!")

You	 will	very	 often	 want	 to	 inject	 run-time	 values	 into	 the	 message.	 For
example,	if	a	customer	spends	a	certain	amount	of	money:

logging.info("User	%s	spent	$%0.2f",	username,	amount)

Notice	 there’s	 no	 binary	 percent	 operator!	 That’s	 deliberate.	 The	 logging
functions	are	designed	 to	 take	a	 format	 string	as	 the	 first	argument,	and	 the
values	 to	 substitute	 as	 subsequent	 arguments.	 That’s	 because	 not	 every	 log
message	 needs	 to	 be	 executed.	You	 can	 -	 and	 often	will	 -	 configured	 your
logger	to	filter	out	all	those	boring	info	messages,	for	example,	or	omit	the

overly	detailed	debug	messages.	In	other	words,	don’t	do	this:

#	NO!	Bad	code!

logging.info("User	%s	spent	$%0.2f"	%	(username,	amount))

Suppose	 you	 are	 filtering	 out	info	 messages	 right	 now,	 so	 the	info

message	 doesn’t	 need	 to	 actually	 log.	 In	 the	 first,	 recommended	 form,	 that

308

logging.info	line	in	your	code	is	cheap;	it’s	essentially	treated	by	Python

as	a	no-op.	In	the	second	form,	it	will	still	be	translated	as	a	no-op,	but	only
after	that	string	is	rendered.	So	you	unnecessarily	incur	the	cost	of	rendering
the	 string,	 just	 to	 throw	 it	 away.	This	 is	 all	 explained	 in	more	 detail	 in	 the
logging	chapter;	for	now,	just	be	aware	of	the	idea. �

309

1	https://docs.python.org/3/library/string.html#format-specification-mini-language

2	https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting

310

https://docs.python.org/3/library/string.html#format-specification-mini-language
https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting

LOGGING	IN	PYTHON

Logging	 is	 critical	 in	 many	 kinds	 of	 software.	For	 long-running	 software
systems,	it	enables	continuous	telemetry	and	reporting.	And	for	all	software,
it	 can	 provides	 priceless	 information	 for	 troubleshooting	 and	 post-mortems.
The	 bigger	 the	 application,	 the	more	 important	 logging	 becomes.	 But	 even
small	scripts	can	benefit.

Python	provides	 logging	 through	 the	logging	module.	In	my	opinion,	 this

module	is	one	of	the	more	technically	impressive	parts	of	Python’s	standard
library.	It’s	well-designed,	flexible,	thread-safe,	and	richly	powerful.	It’s	also
complex,	with	many	moving	parts,	making	it	hard	to	learn	well.	This	chapter
gets	you	over	most	of	that	learning	curve,	so	you	can	fully	benefit	from	what
logging	 has	 to	 offer.	The	 payoff	 is	well	worth	 it,	 and	will	 serve	 you	 for

years.

Broadly,	 there	 are	 two	 ways	 to	 use	logging.	 One,	which	 I’m	 calling	 the

basic	interface,	is	appropriate	for	scripts	-	meaning,	Python	programs	that	are
small	 enough	 to	 fit	 in	 a	 single	 file.	 For	 more	 substantial	 applications,	 it’s

311

typically	 better	 to	 use	logger	objects,	 which	 give	more	 flexible,	 centralized
control,	 and	 access	 to	 logging	 hierarchies.	 We’ll	 start	 with	 the	 former,	 to
introduce	key	ideas.

The	Basic	Interface
Here’s	the	easiest	way	to	use	Python’s	logging	module:

import	logging

logging.warning('Look	out!')

Save	this	in	a	script	and	run	it,	and	you’ll	see	this	printed	to	standard	output:

WARNING:root:Look	out!

You	can	do	useful	logging	right	away,	by	calling	functions	in	the	logging

module	 itself.	 Notice	 you	 invoke	logging.warning(),	 and	 the	 output

line	 starts	 with	WARNING.	 You	 can	 also	 call	logging.error(),	 which

gives	a	different	prefix:

ERROR:root:Look	out!

We	say	 that	warning	 and	error	 are	 at	 different	message	 log	 levels.	You

have	a	spectrum	of	log	levels	to	choose	from,	in	order	of	increasing	severity:
[1]

debug

312

Detailed	 information,	 typically	 of	 interest	 only	 when	 diagnosing
problems.

info

Confirmation	that	things	are	working	as	expected.

warning

An	indication	that	something	unexpected	happened,	or	indicative	of	some
problem	in	 the	near	future	(e.g.	â€˜disk	space	 lowâ€™).	The	software	 is
still	working	as	expected.

error

Due	to	a	more	serious	problem,	the	software	has	not	been	able	to	perform
some	function.

critical

A	 serious	 error,	 indicating	 that	 the	 program	 itself	 may	 be	 unable	 to
continue	running.

You	 use	 them	 all	 just	 like	logging.warning()	 and

logging.error():

logging.debug("Small	detail.	Useful	for	troubleshooting.")

logging.info("This	is	informative.")

logging.warning("This	is	a	warning	message.")

logging.error("Uh	oh.	Something	went	wrong.")

logging.critical("We	have	a	big	problem!")

313

Each	 has	 a	 corresponding	 uppercased	 constant	 in	 the	 library	 (e.g.,
logging.WARNING	 for	logging.warning()).	 You	 use	 these	 when

defining	the	log	level	threshold.	Run	the	above,	and	here	is	the	output:

WARNING:root:This	is	a	warning	message.

ERROR:root:Uh	oh.	Something	went	wrong.

CRITICAL:root:We	have	a	big	problem!

Where	 did	 the	 debug	 and	 info	 messages	 go?	 As	 it	 turns	 out,	 the	 default
logging	 threshold	 is	logging.WARNING,	 which	means	 only	messages	 of

that	 severity	 or	 greater	 are	 actually	 generated;	 the	 others	 are	 ignored
completely.	The	order	matters	in	the	list	above;	debug	is	considered	strictly

less	 severe	 than	info,	 and	 so	on.	Change	 the	 log	 level	 threshold	using	 the

basicConfig	function:

logging.basicConfig(level=logging.INFO)

logging.info("This	is	informative.")

logging.error("Uh	oh.	Something	went	wrong.")

Run	this	new	program,	and	the	INFO	message	gets	printed:

INFO:root:This	is	informative.

ERROR:root:Uh	oh.	Something	went	wrong.

Again,	 the	 order	 is	debug(),	 info(),	 warning(),	 error()	 and

critical(),	 from	 lowest	 to	 highest	 severity.	When	we	 set	 the	 log	 level

314

threshold,	 we	 declare	 that	 we	 only	 want	 to	 see	 messages	 of	 that	 level	 or
higher.	Messages	 of	 a	 lower	 level	 are	 not	 printed.	When	you	 set	level	 to

logging.DEBUG,	you	see	everything;	set	it	to	logging.CRITICAL,	and

you	only	see	critical	messages,	and	so	on.

The	phrase	"log	 level"	means	 two	different	 things,	depending	on	context.	 It
can	mean	the	severity	of	a	message,	which	you	set	by	choosing	which	of	the
functions	to	use	-	logging.warning(),	etc.	Or	it	can	mean	the	threshold

for	 ignoring	 messages,	 which	 is	 signaled	 by	 the	 constants:
logging.WARNING,	etc.

You	can	also	use	the	constants	in	the	more	general	logging.log	function	-

for	example,	a	debug	message:

logging.log(logging.DEBUG,

				"Small	detail.	Useful	for	troubleshooting.")

logging.log(logging.INFO,	"This	is	informative.")

logging.log(logging.WARNING,	"This	is	a	warning	message.")

logging.log(logging.ERROR,	"Uh	oh.	Something	went	wrong.")

logging.log(logging.CRITICAL,	"We	have	a	big	problem!")

This	lets	you	modify	the	log	level	dynamically,	at	runtime:

def	log_results(message,	level=logging.INFO):

				logging.log(level,	"Results:	"	+	message)

Why	do	we	have	log	levels?

315

If	you	haven’t	worked	with	similar	logging	systems	before,	you	may	wonder
why	we	have	different	log	levels,	and	why	you’d	want	to	control	the	filtering
threshold.	It’s	easiest	to	see	this	if	you’ve	written	Python	scripts	that	include	a
number	 of	print()	statements	-	including	some	useful	for	diagnosis	when

something	goes	wrong,	but	a	distraction	when	everything	is	working	fine.

The	 fact	 is,	 some	 of	 those	print()	 statements	 are	 more	 important	 than

others.	 Some	 indicate	 mission-critical	 problems	 you	 always	 want	 to	 know
about	-	possibly	to	the	point	of	waking	up	an	engineer,	so	they	can	deploy	a
fix	immediately.	Some	are	important,	but	can	wait	until	 the	next	work	day	-
and	you	definitely	do	NOT	want	to	wake	anyone	up	for	that.	Some	are	details
which	may	have	been	important	in	the	past,	and	might	be	in	the	future,	so	you
don’t	want	to	remove	them;	in	the	meantime,	they	are	just	line	noise.

Having	log	levels	solves	all	these	problems.	As	you	develop	and	evolve	your
code	 over	 time,	 you	 continually	 add	 new	 logging	 statements	 of	 the
appropriate	severity.	You	now	even	have	 the	 freedom	to	be	proactive.	With
"logging"	via	print(),	each	log	statement	has	a	cost	-	certainly	in	signal-to-

noise	ratio,	and	also	potentially	in	performance.	So	you	might	debate	whether
to	include	that	print	statement	at	all.	But	with	logging,	you	can	insert	info

messages,	 for	 example,	 to	 log	 certain	 events	 occurring	 as	 they	 should.	 In
development,	those	INFO	messages	can	be	very	useful	to	verify	certain	things
are	 happening,	 so	 you	 can	 modify	 the	 log	 level	 to	 produce	 them.	 On
production,	you	may	not	want	to	have	them	cluttering	up	the	logs,	so	you	just

316

set	 the	 threshold	 higher.	 Or	 if	 you	 are	 doing	 some	 kind	 of	 monitoring	 on
production,	 and	 temporarily	 need	 that	 information,	 you	 can	 adjust	 the	 log
level	 threshold	 to	 output	 those	 messages;	 when	 you	 are	 finished,	 you	 can
adjust	it	back	to	exclude	them	again.

When	troubleshooting,	you	can	liberally	introduce	debug-level	statements	to

provide	 extra	 detailed	 statements.	 When	 done,	 you	 can	 just	 adjust	 the	 log
level	 to	 turn	 them	 off.	 You	 can	 leave	 them	 in	 the	 code	 without	 cost,
eliminating	 any	 risk	 of	 introducing	 more	 bugs	 when	 you	 go	 through	 and
remove	them.	This	also	leaves	them	available	if	they	are	needed	in	the	future.

The	log	level	symbols	are	actually	set	 to	 integers.	You	can	theoretically	use
these	 numbers	 instead,	 or	 even	 define	 your	 own	 log	 levels	 that	 are	 (for
example)	 a	 third	 of	 the	 way	 between	WARNING	 and	ERROR.	 In	 normal

practice,	it’s	best	to	use	the	predefined	logging	levels.	Doing	otherwise	makes
your	code	harder	to	read	and	maintain,	and	isn’t	worthwhile	unless	you	have	a
compelling	reason.

For	 reference,	 the	 numbers	 are	 50	 for	CRITICAL,	 40	 for	ERROR,	 30	 for

WARNING,	 20	 for	INFO,	 and	 10	 for	DEBUG.	So	when	you	set	 the	 log	 level

threshold,	 it’s	actually	setting	a	number.	The	only	 log	messages	emitted	are
those	with	a	level	greater	than	or	equal	to	that	number.

Configuring	The	Basic	Interface

317

You	saw	above	you	can	change	 the	 loglevel	 threshold	by	calling	a	 function
called	basicConfig:

logging.basicConfig(level=logging.INFO)

logging.debug("You	won't	see	this	message!")

logging.error("But	you	will	see	this	one.")

If	you	use	it	at	all,	basicConfig	must	be	called	exactly	once,	and	it	must

happen	 before	 the	 first	 logging	 event.	 (Meaning,	 before	 the	 first	 call	 to
debug(),	 or	warning(),	 etc.)	Additionally,	 if	 your	 program	has	 several

threads,	it	must	be	called	from	the	main	thread	-	and	only	the	main	thread.	[2]

You	already	met	one	of	 the	configuration	options,	level.	This	is	set	to	the

log	 level	 threshold,	 and	 is	 one	 of	DEBUG,	 INFO,	 WARNING,	 ERROR,	 or

CRITICAL.	Some	of	the	other	options	include:

filename

Write	log	messages	to	the	given	file,	rather	than	stderr.

filemode

Set	to	"a"	to	append	to	the	log	file	(the	default),	or	"w"	to	overwrite.

format

The	format	of	log	records.

level

318

The	log	level	threshold,	described	above.

By	 default,	 log	messages	 are	 written	 to	 standard	 error.	 You	 can	 also	write
them	to	a	file,	one	per	line,	to	easily	read	later.	Do	this	by	setting	filename

to	the	log	file	path.	By	default	it	appends	log	messages,	meaning	that	it	will
only	 add	 to	 the	 end	 of	 the	 file	 if	 it	 isn’t	 empty.	 If	 you’d	 rather	 the	 file	 be
emptied	before	the	first	log	message,	set	filemode	to	"w".	Be	careful	about

doing	 that,	 of	 course,	 because	 you	 can	 easily	 lose	 old	 log	 messages	 if	 the
application	restarts:

#	Wipes	out	previous	log	entries	when	program	restarts

logging.basicConfig(filename="log.txt",	filemode="w")

logging.error("oops")

The	other	valid	value	is	"a",	for	append	-	that’s	the	default,	and	probably	will
serve	 you	 better	 in	 production.	 "w"	 can	 be	 useful	 during	 development,
though.

format	defines	what	chunks	of	information	the	final	log	record	will	include,

and	 how	 they	 are	 laid	 out.	 These	 chunks	 are	 called	 "attributes"	 in	 the
logging	module	docs.	One	of	these	attributes	is	the	actual	log	message	-	the

string	you	pass	when	you	call	logging.warning(),	and	so	on.	Often	you

will	want	to	include	other	attributes	as	well.	Consider	the	kind	of	log	record
we	saw	above:

WARNING:root:Collision	imminent

319

This	 record	 has	 three	 attributes,	 separated	 by	 colons.	 First	 is	 the	 log	 level
name;	 last	 is	 the	 actual	 string	 message	 you	 pass	 when	 you	 call
logging.warning().	(In	the	middle	is	the	name	of	the	underlying	logger

object.	basicConfig	 uses	 a	 logger	 called	 "root";	we’ll	 learn	more	 about

that	later.)

You	specify	 the	 layout	you	want	by	setting	format	 to	a	string	that	defines

certain	named	fields,	according	to	percent-style	formatting.	Three	of	them	are
levelname,	 the	 log	 level;	message,	 the	 message	 string	 passed	 to	 the

logging	 function;	 and	name,	 the	 name	 of	 the	 underlying	 logger.	Here’s	 an

example:

logging.basicConfig(

				format="Log	level:	%(levelname)s,	msg:	%(message)s")

logging.warning("Collision	imminent")

If	you	run	this	as	a	program,	you	get	the	following	output:

Log	level:	WARNING,	msg:	Collision	imminent

It	turns	out	the	default	formatting	string	is

%(levelname)s:%(name)s:%(message)s

320

You	 indicate	 named	 fields	 in	 percent-formatting	 by	%(FIELDNAME)X,

where	 "X"	 is	 a	 type	 code:	s	 for	 string,	d	 for	 integer	 (decimal),	 and	f	 for

floating-point.

Many	 other	 attributes	 are	 provided,	 if	 you	 want	 to	 include	 them.	 Here’s	 a
select	few	from	the	full	list:[3]

Attribute Format Description

asctime %(asctime)s Human-readable	date/time

funcName %(funcName)s Name	of	function	containing	the	logging	call

lineno %(lineno)d The	line	number	of	the	logging	call

message %(message)s The	log	message

pathname %(pathname)s Full	pathname	of	the	source	file	of	the	logging	call

levelname %

(levelname)s

Text	logging	level	for	the	message	('DEBUG',	'INFO',
'WARNING',	'ERROR',	'CRITICAL')

name %(name)s The	logger’s	name

You	 might	 be	 wondering	 why	 log	 record	 format	 strings	 use	 Python	 2’s
percent-formatting	 style,	when	 everything	 else	 in	 Python	 3	 uses	 the	 newer,
brace-style	 string	 formatting.	As	 it	 turns	out,	 the	conversion	was	attempted,

321

but	 backwards-compatibility	 reasons	 made	 percent-formatting	 the	 only
practical	choice	for	the	logging	module,	even	after	the	Python	3	reboot.

If	you	want	to	use	the	newer	string	formatting	badly	enough,	there	are	things
you	 can	 do	 -	 there’s	 even	 a	 standard	 recipe.[4]	But	 doing	 so	 is	 complicated
enough	that	it	may	not	be	worth	the	effort,	and	it	won’t	help	with	legacy	code.
I	 recommend	 you	 simply	 cooperate	 with	 the	 situation,	 and	 use	 percent
formatting	with	your	Python	logging.

Passing	Arguments
You	often	want	to	include	some	kind	of	runtime	data	in	the	logged	message.
When	 you	 construct	 the	message	 to	 log,	 specify	 the	 final	 log	message	 like
this:

num_fruits	=	14

fruit_name	=	"oranges"

logging.info(

				"We	ate	%d	of	your	%s.	Thanks!",

				num_fruits,	fruit_name)

The	output:

INFO:root:We	ate	14	of	your	oranges.	Thanks!

We	call	info	with	three	parameters.	First	is	the	format	string;	the	second	and

third	are	arguments.	The	general	form	is

322

logging.info(format,	*args)

You	 can	 pass	 zero	 or	 more	 arguments,	 so	 long	 as	 each	 has	 a	 field	 in	 the
format	string:

logging.info("%s,	%s,	%s,	%s,	%s,	%s	and	%s",

				"Doc",	"Happy",	"Sneezy",	"Bashful",

				"Dopey",	"Sleepy",	"Grumpy")

You	must	 resist	 the	 obvious	 temptation	 to	 format	 the	 string	 fully,	 and	 pass
that	to	the	logging	function:

num_fruits	=	14

fruit_name	=	"oranges"

logging.warning(

				"Don't	do	this:	%d	%s"	%	(num_fruits,	fruit_name))

logging.warning(

				"Or	even	this:	{:d}	{:s}".format(

				num_fruits,	fruit_name))

This	works,	 of	 course,	 in	 the	 sense	 that	 you	will	 get	 correct	 log	messages.
However,	it’s	wasteful,	and	surrenders	important	benefits	logging	normally

provides.	Remember:	when	the	line	of	code	with	the	log	message	is	executed,
it	may	not	actually	trigger	a	log	event.	If	the	log	level	threshold	is	higher	than
the	message	 itself,	 the	 line	does	nothing.	 In	 that	 case,	 there	 is	 no	 reason	 to
format	the	string.

323

In	 the	 first	 form,	 the	 string	 is	 formatted	 if	 and	 only	 if	 a	 log	 event	 actually
happens,	 so	 that’s	 fine.	But	 if	 you	 format	 the	 string	 yourself,	 it’s	always
formatted.	That	takes	up	system	memory	and	CPU	cycles	even	if	no	logging
takes	 place.	 If	 the	 code	 path	 with	 the	 logging	 call	 is	 only	 executed
occasionally,	that’s	not	a	big	deal.	But	it	impairs	the	program	when	a	debug
message	is	logged	in	the	middle	of	a	tight	loop.	When	you	originally	code	the
line,	you	never	really	know	where	it	might	migrate	in	the	future,	or	who	will
call	your	function	in	ways	you	never	imagined.

So	just	use	the	supported	form,	where	the	first	argument	is	the	format	string,
and	subsequent	arguments	are	the	parameters	for	it.	You	can	also	use	named
fields,	by	passing	a	dictionary	as	the	second	argument:

fruit_info	=	{"count":	14,	"name":	"oranges"}

logging.info(

				"We	ate	%(count)d	of	your	%(name)s.	Thanks!",

				fruit_info)

Beyond	Basic:	Loggers
The	basic	 interface	 is	simple	and	easy	 to	set	up.	 It	works	well	 in	single-file
scripts.	 Larger	 Python	 applications	 tend	 to	 have	 different	 logging	 needs,
however.	logging	 meets	 these	 needs	 through	 a	 richer	 interface,	 called

logger	objects	-	or	simply,	loggers.

324

Actually,	 you	 have	 been	 using	 a	 logger	 object	 all	 along:	 when	 you	 call
logging.warning()	 (or	the	other	log	functions),	 they	convey	messages

through	 what	 is	 called	 the	root	 logger	 -	 the	 primary,	 default	 logger	 object.
This	is	why	the	word	"root"	shows	in	some	example	output.

logger.basicConfig	 operates	 on	 this	 root	 logger.	 You	 can	 fetch	 the

actual	root	logger	object	by	calling	logging.getLogger:

>>>	logger	=	logging.getLogger()

>>>	logger.name

'root'

As	you	can	see,	it	knows	its	name	is	"root".	Logger	objects	have	all	the	same
functions	(methods,	actually)	the	logging	module	itself	has:

import	logging

logger	=	logging.getLogger()

logger.debug("Small	detail.	Useful	for	troubleshooting.")

logger.info("This	is	informative.")

logger.warning("This	is	a	warning	message.")

logger.error("Uh	oh.	Something	went	wrong.")

logger.critical("We	have	a	big	problem!")

Save	this	in	a	file	and	run	it,	and	you’ll	see	the	following	output:

This	is	a	warning	message.

Uh	oh.	Something	went	wrong.

We	have	a	big	problem!

325

▪

▪

This	 is	different	from	what	we	saw	with	basicConfig,	which	printed	out

this	instead:

WARNING:root:This	is	a	warning	message.

ERROR:root:Uh	oh.	Something	went	wrong.

CRITICAL:root:We	have	a	big	problem!

At	this	point,	we’ve	taken	steps	backward	compared	to	basicConfig.	Not

only	 is	 the	 log	message	unadorned	by	 the	 log	 level,	or	anything	else	useful.
The	log	level	threshold	is	hard-coded	to	logging.WARNING,	with	no	way

to	 change	 it.	 The	 logging	 output	 will	 be	 written	 to	 standard	 error,	 and	 no
where	else,	regardless	of	where	you	actually	need	it	to	go.

Let’s	take	inventory	of	what	we	want	to	control	here.	We	want	to	choose	our
log	 record	 format.	And	 further,	we	want	 to	 be	 able	 to	 control	 the	 log	 level
threshold,	and	write	messages	 to	different	 streams	and	destinations.	You	do
this	with	a	tool	called	handlers.

Log	Destinations:	Handlers	and	Streams
By	 default,	 loggers	 write	 to	 standard	 error.	 You	 can	 select	 a	 different
destination	-	or	even	several	destinations	-	for	each	log	record:

You	can	write	log	records	to	a	file.	Very	common.

You	can,	while	writing	records	to	that	file,	also	parrot	it	to	stderr.

326

▪

▪

▪

▪

▪

▪

Or	to	stdout.	Or	both.

You	can	simultaneously	log	messages	to	two	different	files.

In	 fact,	 you	 can	 log	 (say)	INFO	 and	 higher	 messages	 to	 one	 file,	 and

ERROR	and	higher	to	another.

You	 can	write	 log	 records	 to	 a	 remote	 log	 server,	 accessed	 via	 a	 REST
HTTP	API.

Mix	and	match	all	the	above,	and	more.

And	you	can	set	a	different,	custom	log	format	for	each	destination.

This	 is	 all	managed	 through	what	 are	 called	handlers.	 In	Python	 logging,	 a
handler’s	 job	 is	 to	 take	 a	 log	 record,	 and	make	 sure	 it	 gets	 recorded	 in	 the
appropriate	destination.	That	destination	can	be	a	file;	a	stream	like	stderr	or
stdout;	or	something	more	abstract,	like	inserting	into	a	queue,	or	transmitting
via	an	RPC	or	HTTP	call.

By	default,	logger	objects	don’t	have	any	handlers.	You	can	verify	this	using
the	hasHandlers	method:

>>>	logger	=	logging.getLogger()

>>>	logger.hasHandlers()

False

With	no	handler,	a	logger	has	the	following	behavior:

327

▪

▪

▪

Messages	are	written	to	stderr.

Only	the	message	is	written,	nothing	else.	There’s	no	way	to	add	fields	or
otherwise	modify	it.

The	 log	 level	 threshold	 is	logging.WARNING.	 There	 is	 no	 way	 to

change	that.

To	change	this,	your	first	step	is	to	create	a	handler.	Nearly	all	logger	objects
you	 ever	 use	 will	 have	 custom	 handlers.	 Let’s	 see	 how	 to	 create	 a	 simple
handler	that	writes	messages	to	a	file,	called	"log.txt".

import	logging

logger	=	logging.getLogger()

log_file_handler	=	logging.FileHandler("log.txt")

logger.addHandler(log_file_handler)

logger.debug("A	little	detail")

logger.warning("Boo!")

The	logging	module	provides	a	class	called	FileHandler.	It	takes	a	file

path	 argument,	 and	will	write	 log	 records	 into	 that	 file,	 one	per	 line.	When
you	run	this	code,	log.txt	will	be	created	(if	it	doesn’t	already	exist),	and

will	contain	the	string	"Boo!"	followed	by	a	newline.	(If	log.txt	did	exist

already,	the	logged	message	would	be	appended	to	the	end	of	the	file.)

But	 "A	 little	 detail"	 is	 not	 written,	 because	 it’s	 below	 the	 default	 logger
threshold	 of	WARNING.	 We	 change	 that	 by	 calling	 a	 method	 named

328

setLevel	on	the	logger	object:

import	logging

logger	=	logging.getLogger()

logger.setLevel(logging.DEBUG)

log_file_handler	=	logging.FileHandler("log.txt")

logger.addHandler(log_file_handler)

logger.debug("A	little	detail")

logger.warning("Boo!")

This	writes	the	following	in	"log.txt":

A	little	detail

Boo!

Confusingly,	you	can	call	setLevel	on	a	logger	with	no	handlers,	but	it	has

no	effect:

#	Doing	it	wrong:

import	logging

logger	=	logging.getLogger()

logger.setLevel(logging.DEBUG)	#	No	effect.

logger.debug("This	won't	work	:(")

To	change	the	threshold	from	the	default	of	logging.WARNING,	you	must

both	add	a	handler,	and	change	the	logger’s	level.

What	if	you	want	to	log	to	stdout?	Do	that	with	a	StreamHandler:

329

import	logging

import	sys

logger	=	logging.getLogger()

out_handler	=	logging.StreamHandler(sys.stdout)

logger.addHandler(out_handler)

logger.warning("Boo!")

If	 you	 save	 this	 in	 a	 file	 and	 run	 it,	 you’ll	 get	 "Boo!"	 on	 standard	 output.
Notice	 that	logging.StreamHandler	 takes	sys.stdout	 as	 its

argument.	You	 can	 create	 a	StreamHandler	without	an	argument	 too,	 in

which	case	it	will	write	its	records	to	standard	error:

import	logging

logger	=	logging.getLogger()

#	Same	as	StreamHandler(sys.stderr)

stderr_handler	=	logging.StreamHandler()

logger.addHandler(stderr_handler)

logger.warning("This	goes	to	standard	error")

In	 fact,	 you	 can	 pass	 any	 file-like	 object;	 The	 object	 just	 needs	 to	 define
compatible	write	and	flush	methods.	Theoretically,	you	could	even	log	to

a	 file	 by	 creating	 a	 handler	 like	StreamHandler(open("log.txt",

"a"))	 -	 but	 in	 that	 case,	 it’s	 better	 to	 use	 a	FileHandler,	 so	 it	 can

manage	opening	and	closing	the	file.

When	 creating	 a	 handler,	 your	 needs	 are	 nearly	 always	 met	 by	 either
StreamHandler	 or	FileHandler.	There	are	other	predefined	handlers,

330

▪

▪

▪

▪

too,	useful	when	logging	to	certain	specialized	destinations:

WatchedFileHandler	and	RotatingFileHandler,	for	logging	to

rotated	log	files

SocketHandler	 and	DatagramHandler	 for	 logging	 over	 network

sockets

HTTPHandler	for	logging	over	an	HTTP	REST	interface

QueueHandler	 and	QueueListener	 for	 queuing	 log	 records	 across

thread	and	process	boundaries

See	the	official	docs	[5]	for	more	details.

Logging	to	Multiple	Destinations
Suppose	you	want	your	long-running	application	to	log	all	messages	to	a	file,
including	debug-level	records.	At	the	same	time,	you	want	warnings,	errors,
and	criticals	logged	to	the	console.	How	do	you	do	this?

We’ve	given	you	part	of	the	answer	already.	A	single	logger	object	can	have
multiple	 handlers:	 all	 you	 have	 to	 do	 is	 call	addHandler	multiple	 times,

passing	 a	 different	 handler	 object	 for	 each.	 For	 example,	 here	 is	 how	 you
parrot	all	log	messages	to	the	console	(via	standard	error)	and	also	to	a	file:

331

import	logging

logger	=	logging.getLogger()

#	Remember,	StreamHandler	defaults	to	using	sys.stderr

console_handler	=	logging.StreamHandler()

logger.addHandler(console_handler)

#	Now	the	file	handler:

logfile_handler	=	logging.FileHandler("log.txt")

logger.addHandler(logfile_handler)

logger.warning(

				"This	goes	to	both	the	console,	AND	log.txt.")

This	 is	 combining	 what	 we	 learned	 above.	 We	 create	 two	 handlers	 -	 a
StreamHandler	 named	console_handler,	 and	 a	FileHandler

named	logfile_handler	 -	 and	 add	 both	 to	 the	 same	 logger	 (via

addHandler).	That’s	all	you	need	to	log	to	multiple	destinations	in	parallel.

Sure	 enough,	 if	 you	 save	 the	 above	 in	 a	 script	 and	 run	 it,	 you’ll	 find	 the
messages	 are	 both	 written	 into	 "log.txt",	 as	 well	 as	 printed	 on	 the	 console
(through	standard	error).

We	aren’t	done,	though.	How	do	we	make	it	so	every	record	is	written	in	the
log	 file,	 but	 only	 those	 of	logging.WARNING	 or	 higher	 get	 sent	 to	 the

console	 screen?	Do	 this	 by	 setting	 log	 level	 thresholds	 for	 both	 the	 logger
object	 and	 the	 individual	handlers.	Both	 logger	objects	 and	handlers	have	a
method	called	setLevel,	taking	a	log	level	threshold	as	an	argument:

my_logger.setLevel(logging.DEBUG)

my_handler.setLevel(logging.INFO)

332

If	you	set	the	level	for	a	logger,	but	not	its	handlers,	the	handlers	inherit	from
the	logger:

my_logger.setLevel(logging.ERROR)

my_logger.addHandler(my_handler)

my_logger.error("This	message	is	emitted	by	my_handler.")

my_logger.debug("But	this	message	will	not.")

And	you	can	override	 that	 at	 the	handler	 level.	Here,	 I	 create	 two	handlers.
One	 handler	 inherits	 its	 threshold	 from	 the	 logger,	while	 the	 other	 does	 its
own	thing:

import	logging

logger	=	logging.getLogger()

logger.setLevel(logging.DEBUG)

verbose_handler	=	logging.FileHandler("verbose.txt")

logger.addHandler(verbose_handler)

terse_handler	=	logging.FileHandler("terse.txt")

terse_handler.setLevel(logging.WARNING)

logger.addHandler(terse_handler)

logger.debug("This	message	appears	in	verbose.txt	ONLY.")

logger.warning("And	this	message	appears	in	both	files.")

There’s	a	caveat,	though:	a	handler	can	only	make	itself	more	 selective	 than
its	logger,	not	less.	If	the	logger	chooses	a	threshold	of	logger.DEBUG,	its

handler	can	choose	a	threshold	of	logger.INFO,	or	logger.ERROR,	and

333

so	on.	But	if	the	logger	defines	a	strict	threshold	-	say,	logger.INFO	-	an

individual	 handler	 cannot	 choose	 a	 lower	 one,	 like	logger.DEBUG.	 So

something	like	this	won’t	work:

#	This	doesn't	quite	work...

import	logging

my_logger	=	logging.getLogger()

my_logger.setLevel(logging.INFO)

my_handler	=	logging.StreamHandler()

my_handler.setLevel(logging.DEBUG)	#	FAIL!

my_logger.addHandler(my_handler)

my_logger.debug("No	one	will	ever	see	this	message	:(")

There’s	a	subtle	corollary	of	this.	By	default,	a	logger	object’s	threshold	is	set
to	logger.WARNING.	So	if	you	don’t	set	the	logger	object’s	log	level	at	all,

it	implicitly	censors	all	handlers:

import	logging

my_logger	=	logging.getLogger()

my_handler	=	logging.StreamHandler()

my_handler.setLevel(logging.DEBUG)	#	FAIL!

my_logger.addHandler(my_handler)

#	No	one	will	see	this	message	either.

my_logger.debug(

				"Because	anything	under	WARNING	gets	filtered.")

The	logger	object’s	default	log	level	is	not	always	permissive	enough	for	all
handlers	 you	might	 want	 to	 define.	 So	 you	will	 generally	 want	 to	 start	 by

334

setting	 the	 logger	 object	 to	 the	 lowest	 threshold	 needed	 by	 any	 log-record
destination,	and	tighten	that	threshold	for	each	handler	as	needed.

Bringing	this	all	together,	we	can	now	accomplish	what	we	originally	wanted
-	to	verbosely	log	everything	into	a	log	file,	while	duplicating	only	the	more
interesting	messages	onto	the	console:

import	logging

logger	=	logging.getLogger()

logger.setLevel(logging.DEBUG)

#	Warnings	and	higher	only	on	the	console.

console_handler	=	logging.StreamHandler()

console_handler.setLevel(logging.WARNING)

logger.addHandler(console_handler)

#	But	allow	everything	to	into	the	log	file.

logfile_handler	=	logging.FileHandler("log.txt")

logger.addHandler(logfile_handler)

logger.warning(

				"This	goes	to	both	the	console,	AND	into	log.txt.")

logger.debug("While	this	only	goes	to	the	file.")

Add	as	many	handlers	as	you	want.	Each	can	have	different	log	levels.	You
can	 log	 to	 many	 different	 destinations,	 using	 the	 different	 built-in	 handler
types	mentioned	above.	If	those	don’t	do	what	you	need,	implement	your	own
subclass	of	logging.Handler	and	use	that.

Record	Layout	with	Formatters

335

We	haven’t	covered	one	important	detail.	So	far,	we’ve	only	shown	you	how
to	create	logger	objects	that	will	write	just	the	log	message	and	nothing	else.
At	the	very	least,	you	probably	want	to	annotate	that	with	the	log	level.	You
may	also	want	to	insert	the	time,	or	some	other	information.	How	do	you	do
that?

The	 answer	 is	 to	 use	 a	formatter.	 A	 formatter	 converts	 a	 log	 record	 into
something	that	is	recorded	in	the	handler’s	destination.	That’s	an	abstract	way
of	saying	 it;	more	simply,	a	 typical	 formatter	 just	converts	 the	record	 into	a
usefully-formatted	string.	That	string	contains	the	actual	log	message,	as	well
as	the	other	fields	you	care	about.

The	 procedure	 is	 to	 create	 a	Formatter	 object,	 then	 associate	 with	 a

handler	 (using	 the	 latter’s	setHandler	 method).	Creating	 a	 formatter	 is

easy	-	it	normally	takes	just	one	argument,	the	format	string:

import	logging

my_handler	=	logging.StreamHandler()

fmt	=	logging.Formatter("My	message	is:	%(message)s")

my_handler.setFormatter(fmt)

my_logger	=	logging.getLogger()

my_logger.addHandler(my_handler)

my_logger.warning("WAKE	UP!!")

If	you	run	this	in	a	script,	the	output	will	be:

My	message	is	this:	WAKE	UP!!

336

Notice	the	attribute	for	 the	message,	%(message)s,	included	in	the	string.

This	is	just	a	normal	formatting	string,	in	the	older,	percent-formatting	style.
It’s	 exactly	 equivalent	 to	 using	 the	format	 argument	 when	 you	 call

basicConfig.	 For	 this	 reason,	 you	 can	 use	 the	 same	 attributes,	 arranged

however	 you	 like	 -	 here’s	 the	 attribute	 table	 again,	 distilled	 from	 the	 full
official	list:[6]

Attribute Format Description

asctime %(asctime)s Human-readable	date/time

funcName %(funcName)s Name	of	function	containing	the	logging	call

lineno %(lineno)d The	line	number	of	the	logging	call

message %(message)s The	log	message

pathname %(pathname)s Full	pathname	of	the	source	file	of	the	logging	call

levelname %

(levelname)s

Text	logging	level	for	the	message	('DEBUG',	'INFO',
'WARNING',	'ERROR',	'CRITICAL')

name %(name)s The	logger’s	name

337

1	 These	 beautifully	 crisp	 descriptions,	 which	 I	 cannot	 improve	 upon,	 are	 taken	 from
https://docs.python.org/3/howto/logging.html	.

2	These	restrictions	aren’t	in	place	for	logger	objects,	described	later.

3	https://docs.python.org/3/library/logging.html#logrecord-attributes

4	https://docs.python.org/3/howto/logging-cookbook.html#use-of-alternative-formatting-styles

5	https://docs.python.org/3/library/logging.handlers.html

6	https://docs.python.org/3/library/logging.html#logrecord-attributes

338

https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/library/logging.html#logrecord-attributes
https://docs.python.org/3/howto/logging-cookbook.html#use-of-alternative-formatting-styles
https://docs.python.org/3/library/logging.handlers.html
https://docs.python.org/3/library/logging.html#logrecord-attributes

WHAT’S	NEXT?

How	 lucky	 we	 are.	 Our	 craft	 of	 software	 is	 profoundly	 rewarding	 -
personally,	professionally,	financially…		and	in	terms	of	the	massive,	positive
impact	we	can	have.	It’s	deeply	fulfilling,	in	ways	those	who	don’t	code	may
never	know.

On	top	of	that,	we	have	a	wonderful	language	like	Python	to	code	in.	When	I
first	met	Guido	van	Rossum	in	person,	I	thanked	him	for	creating	my	favorite
language.	If	you	ever	meet	him,	do	the	same!

This	 is	 not	 an	 end.	 It’s	 a	 starting	 point.	And	 I	mean	 that:	 I	 already	 have	 a
detailed	outline	of	this	book’s	3rd	edition,	and	even	some	of	the	fourth.	And
at	least	two	other	completely	different	books	mapped	out,	about	Python	or	the
broader	craft	of	software	development.	And	other	media	like	videos,	and	live,
in-person	events.	All	I	will	say	is:	keep	an	eye	on	powerfulpython.com.

So…		 we’re	 not	 done.	Maybe	 you	 found	 the	 hidden	message	 earlier:	 "This
book	is	 just	 the	beginning.	Far	more	to	come."	And	while	I	can’t	yet	reveal
what	that	fully	means,	I	hope	you’re	just	as	excited	as	I	for	the	future.

339

My	 email	 is	aaron@powerfulpython.com.	I	 know	 there	 are	 topics	 you	 have
always	wanted	to	learn	about,	for	Python	or	programming	in	general.	As	you
think	of	them,	tell	me;	your	requests	deeply	influence	what	I	create	next.	Even
if	I	don’t	reply	(sometimes	my	inbox	just	gets	buried),	I	always	carefully	read
and	consider	what	you	have	to	say.

Thank	you	for	reading;	it	is	my	honor	writing	for	you.	My	prayer	is	that	you
will	find	it	valuable	in	your	work,	your	career,	even	-	dare	I	hope?	-	your	life.
If	we	ever	cross	paths,	please	introduce	yourself.	I’d	love	to	meet	you.

Happy	coding!

Aaron	Maxwell �

This	book	was	downloaded	from	AvaxHome!

Visit	my	blog	for	more	new	books:

www.avxhm.se/blogs/AlenMiler

340

mailto:aaron@powerfulpython.com
https://tr.im/avaxhome

Table	of	Contents

Doing	More	with	Python 6
Python	Versions 9
Python	Application	Environments 11
Python	Package	Management 15

Scaling	With	Generators 22
Iteration	in	Python 23
Generator	Functions 29
Generator	Patterns	and	Scalable	Composability 37
Python	is	Filled	With	Iterators 49
The	Iterator	Protocol 56

Creating	Collections	with	Comprehensions 66
List	Comprehensions 68
Formatting	For	Readability	(And	More) 72
Multiple	Sources	and	Filters 73
Comprehensions	and	Generators 79
Dictionaries,	Sets,	and	Tuples 85
Limits	of	Comprehensions 90

Advanced	Functions 96
Accepting	&	Passing	Variable	Arguments 97
Functions	As	Objects 109
Key	Functions	in	Python 115

Decorators 121
The	Basic	Decorator 123
Data	In	Decorators 131
Decorators	That	Take	Arguments 145
Class-based	Decorators 152
Decorators	For	Classes 157
Preserving	the	Wrapped	Function 161

Exceptions	and	Errors 168
The	Basic	Idea 168
Exceptions	Are	Objects 180
Raising	Exceptions 184

341

Catching	And	Re-raising 188
The	Most	Diabolical	Python	Anti-Pattern 192

Classes	and	Objects:	Beyond	The	Basics 202
Quick	Note	on	Python	2 202
Properties 204
The	Factory	Patterns 216
The	Observer	Pattern 227
Magic	Methods 241
Rebelliously	Misusing	Magic	Methods 254

Automated	Testing	and	TDD 261
What	is	Test-Driven	Development? 262
Unit	Tests	And	Simple	Assertions 265
Fixtures	And	Common	Test	Setup 272
Asserting	Exceptions 276
Using	Subtests 278
Final	Thoughts 284

String	Formatting 288
Replacing	Fields 291
Number	Formats	(and	"Format	Specs") 294
Width,	Alignment,	and	Fill 297
F-Strings 301
Percent	Formatting 304

Logging	in	Python 311
The	Basic	Interface 312
Configuring	The	Basic	Interface 317
Passing	Arguments 322
Beyond	Basic:	Loggers 324
Log	Destinations:	Handlers	and	Streams 326
Logging	to	Multiple	Destinations 331
Record	Layout	with	Formatters 335

What’s	Next? 339

342

	Doing More with Python
	Python Versions
	Python Application Environments
	Python Package Management

	Scaling With Generators
	Iteration in Python
	Generator Functions
	Generator Patterns and Scalable Composability
	Python is Filled With Iterators
	The Iterator Protocol

	Creating Collections with Comprehensions
	List Comprehensions
	Formatting For Readability (And More)
	Multiple Sources and Filters
	Comprehensions and Generators
	Dictionaries, Sets, and Tuples
	Limits of Comprehensions

	Advanced Functions
	Accepting & Passing Variable Arguments
	Functions As Objects
	Key Functions in Python

	Decorators
	The Basic Decorator
	Data In Decorators
	Decorators That Take Arguments
	Class-based Decorators
	Decorators For Classes
	Preserving the Wrapped Function

	Exceptions and Errors
	The Basic Idea
	Exceptions Are Objects
	Raising Exceptions
	Catching And Re-raising
	The Most Diabolical Python Anti-Pattern

	Classes and Objects: Beyond The Basics
	Quick Note on Python 2
	Properties
	The Factory Patterns
	The Observer Pattern
	Magic Methods
	Rebelliously Misusing Magic Methods

	Automated Testing and TDD
	What is Test-Driven Development?
	Unit Tests And Simple Assertions
	Fixtures And Common Test Setup
	Asserting Exceptions
	Using Subtests
	Final Thoughts

	String Formatting
	Replacing Fields
	Number Formats (and "Format Specs")
	Width, Alignment, and Fill
	F-Strings
	Percent Formatting

	Logging in Python
	The Basic Interface
	Configuring The Basic Interface
	Passing Arguments
	Beyond Basic: Loggers
	Log Destinations: Handlers and Streams
	Logging to Multiple Destinations
	Record Layout with Formatters

	What’s Next?

